基于PSO-DSRVM的边坡变形预测

P642.22; 为了建立高精度的边坡位移预测模型,文章采用基于粒子群优化(PSO)的双稀疏相关向量机(DSRVM)建立边坡稳定性和影响因素之间的非线性关系.双稀疏相关向量机是在变分和相关向量机(RVM)框架下提出的一种多核组合优化的方法,相比于RVM和其他多核学习方法,DSRVM不仅有更少的训练时间,并且能够得到更高的预测精度.由于DSRVM的核参数对预测效果的影响较大,文章采用粒子群算法实现多个核参数的优化选取并应用于边坡位移预测.最后将本文提出的基于粒子群优化的双稀疏相关向量机(PSO-DSRVM)预测结果与极限学习机(ELM)和小波神经网络(WNN)预测结果进行对比,通过均方根误差(R...

Full description

Saved in:
Bibliographic Details
Published in中国地质灾害与防治学报 Vol. 34; no. 1; pp. 1 - 7
Main Authors 袁于思, 冯小鹏, 李勇, 易灿灿
Format Journal Article
LanguageChinese
Published 中铁武汉电气化局集团第一工程有限公司,湖北武汉 430074%武汉科技大学,湖北武汉 430081 01.02.2023
Subjects
Online AccessGet full text
ISSN1003-8035
DOI10.16031/j.cnki.issn.1003-8035.202112032

Cover

More Information
Summary:P642.22; 为了建立高精度的边坡位移预测模型,文章采用基于粒子群优化(PSO)的双稀疏相关向量机(DSRVM)建立边坡稳定性和影响因素之间的非线性关系.双稀疏相关向量机是在变分和相关向量机(RVM)框架下提出的一种多核组合优化的方法,相比于RVM和其他多核学习方法,DSRVM不仅有更少的训练时间,并且能够得到更高的预测精度.由于DSRVM的核参数对预测效果的影响较大,文章采用粒子群算法实现多个核参数的优化选取并应用于边坡位移预测.最后将本文提出的基于粒子群优化的双稀疏相关向量机(PSO-DSRVM)预测结果与极限学习机(ELM)和小波神经网络(WNN)预测结果进行对比,通过均方根误差(RMSE)、复相关系数(R2)和平均相对预测误差(ARPE)进行评价,验证了PSO-DSRVM模型在边坡变形预测上的可行性.
ISSN:1003-8035
DOI:10.16031/j.cnki.issn.1003-8035.202112032