基于部分解耦合的非线性数字干扰对消算法

TN911.7; 针对数字对消器中基于并行Hammerstein(parallel Hammerstein,PH)模型的非线性最小均方(least mean square,LMS)算法基函数之间的强相关性而存在收敛速度变慢、收敛稳定性变差、稳态误差增大的问题,提出了一种采用部分解耦合策略的改进算法.通过引入带约束的正则方程,实现各个非线性阶次独立的迭代步长设定.并且对基于部分解耦合干扰对消算法进行解析分析,给出了平均和均方意义下的收敛条件.仿真结果表明,所提方法在几乎不损失稳态误差性能的前提下,提升了非线性LMS算法收敛速度,改善了收敛性能,并且针对滤波器非线性阶数和记忆长度变化具有良好的鲁棒...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 45; no. 4; pp. 973 - 981
Main Authors 崔中普, 葛松虎, 李亚星, 郭宇, 邢金岭, 孟进
Format Journal Article
LanguageChinese
Published 海军工程大学舰船综合电力技术国防科技重点实验室,湖北武汉430033 01.04.2023
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.12305/j.issn.1001-506X.2023.04.05

Cover

More Information
Summary:TN911.7; 针对数字对消器中基于并行Hammerstein(parallel Hammerstein,PH)模型的非线性最小均方(least mean square,LMS)算法基函数之间的强相关性而存在收敛速度变慢、收敛稳定性变差、稳态误差增大的问题,提出了一种采用部分解耦合策略的改进算法.通过引入带约束的正则方程,实现各个非线性阶次独立的迭代步长设定.并且对基于部分解耦合干扰对消算法进行解析分析,给出了平均和均方意义下的收敛条件.仿真结果表明,所提方法在几乎不损失稳态误差性能的前提下,提升了非线性LMS算法收敛速度,改善了收敛性能,并且针对滤波器非线性阶数和记忆长度变化具有良好的鲁棒性.在1 MHz带宽二进制相移键控(binary phase shift ke-ying,BPSK)干扰和加性高斯白噪声情况下干噪比设置为20 dB,相较于传统非线性LMS算法,所提算法可以实现最大0.5倍迭代步长上界、最高非线性阶次9以及最大记忆长度12的设定.
ISSN:1001-506X
DOI:10.12305/j.issn.1001-506X.2023.04.05