基于视觉对比度机制的红外弱小目标检测算法

TP391.4; 针对红外图像中空天、海天等复杂背景及像素点噪声容易造成检测虚警的问题,提出一种基于视觉对比度机制的红外弱小目标检测算法.首先,通过新定义的局部对比度算子获取对比度增强的图像,该步骤可抑制背景杂波与像素点噪声对检测的干扰,提高图像的信杂比,增强目标区域的视觉显著性.然后,利用多尺度方法优化图像的显著区域,以增强算法的适用性,从而实现算法对不同尺寸的弱小目标的有效检测.最后,利用自适应阈值分割方法获取待检测的真实目标.实验结果表明,该算法无需图像预处理环节即可实现对不同尺寸的弱小目标的鲁棒性检测,对比常用算法具有快速性、高效性和较强的适用性....

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 41; no. 11; pp. 2416 - 2423
Main Authors 蔡军, 黄袁园, 李鹏泽, 赵子硕, 邓撬
Format Journal Article
LanguageChinese
Published 重庆邮电大学自动化学院,重庆,400065 01.11.2019
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.3969/j.issn.1001-506X.2019.11.03

Cover

Abstract TP391.4; 针对红外图像中空天、海天等复杂背景及像素点噪声容易造成检测虚警的问题,提出一种基于视觉对比度机制的红外弱小目标检测算法.首先,通过新定义的局部对比度算子获取对比度增强的图像,该步骤可抑制背景杂波与像素点噪声对检测的干扰,提高图像的信杂比,增强目标区域的视觉显著性.然后,利用多尺度方法优化图像的显著区域,以增强算法的适用性,从而实现算法对不同尺寸的弱小目标的有效检测.最后,利用自适应阈值分割方法获取待检测的真实目标.实验结果表明,该算法无需图像预处理环节即可实现对不同尺寸的弱小目标的鲁棒性检测,对比常用算法具有快速性、高效性和较强的适用性.
AbstractList TP391.4; 针对红外图像中空天、海天等复杂背景及像素点噪声容易造成检测虚警的问题,提出一种基于视觉对比度机制的红外弱小目标检测算法.首先,通过新定义的局部对比度算子获取对比度增强的图像,该步骤可抑制背景杂波与像素点噪声对检测的干扰,提高图像的信杂比,增强目标区域的视觉显著性.然后,利用多尺度方法优化图像的显著区域,以增强算法的适用性,从而实现算法对不同尺寸的弱小目标的有效检测.最后,利用自适应阈值分割方法获取待检测的真实目标.实验结果表明,该算法无需图像预处理环节即可实现对不同尺寸的弱小目标的鲁棒性检测,对比常用算法具有快速性、高效性和较强的适用性.
Abstract_FL Aiming to resolve the problem that the complex background of sea‐sky and also pixel‐level noise are easy to result in false alarm in the process of target detection ,a detection algorithm of the infrared w eak target using visual contrast mechanism is proposed .First ,a contrast‐enhanced image is obtained by using the defined local contrast measure operator .T his step can enhance the visual saliency of the target region ,and simultane‐ously suppress the interference of the complex background and pixel‐level noise ,so as to improve the signal‐to‐clutter ratio (SCR) of the image .T hen ,the saliency region of the image is optimized in multi‐scale to improve the versatility of the algorithm ,so that it can be competent in the detection of w eak targets of different sizes . Finally ,an adaptive threshold segmentation is used to obtain the real target . T he experimental results show that the proposed algorithm can realize the robustness detection of different sized w eak targets w ithout image preprocessing .T hus it is an effective method for infrared w eak target detection compared w ith other algorithms with its high rapidity ,efficiency and strong applicability .
Author 邓撬
蔡军
李鹏泽
黄袁园
赵子硕
AuthorAffiliation 重庆邮电大学自动化学院,重庆,400065
AuthorAffiliation_xml – name: 重庆邮电大学自动化学院,重庆,400065
Author_FL LI Pengze
DENG Qiao
HUANG Yuanyuan
ZHAO Zishuo
CAI Jun
Author_FL_xml – sequence: 1
  fullname: CAI Jun
– sequence: 2
  fullname: HUANG Yuanyuan
– sequence: 3
  fullname: LI Pengze
– sequence: 4
  fullname: ZHAO Zishuo
– sequence: 5
  fullname: DENG Qiao
Author_xml – sequence: 1
  fullname: 蔡军
– sequence: 2
  fullname: 黄袁园
– sequence: 3
  fullname: 李鹏泽
– sequence: 4
  fullname: 赵子硕
– sequence: 5
  fullname: 邓撬
BookMark eNo9j8tKAzEYRrOoYK19CnfCxGT-ZDIDbqR4g4IbBXclc0npIFMwipeVC1GLoBsvoIKiYnetIgoOPo7J9DGsKK4OfIvzccZQKWtnCUITlGAIvGAqxS2tM0wJoQ4n3ip2CQ0wpZhACZX_51FU1boVEk5BcCJYGU2b2_wrPxl0Dwbdjul_2P6ZyZ_sTW6O3our_SK_N48X5vPFPJ8W1z17d2gf9uzbcdG7tK_n42hEyTWdVP9YQStzs8u1Bae-NL9Ym6k7mhIODhdxJGNP-r5UgXKjRHIQrlJcBkksBaMcSAwyItQVDCAUTDEgnCXCj0LpelBBk7_eLZkpmTUbaXtzPRs-NrY3mtFOvJvqn1467AT4Bp_PZaM
ClassificationCodes TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-506X.2019.11.03
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Infrared small target detection algorithm using visual contrast mechanism
EndPage 2423
ExternalDocumentID xtgcydzjs201911003
GrantInformation_xml – fundername: 国家自然科学基金项目; 重庆市教委科学技术研究计划青年项目; 重庆市高校创新团队项目资助课题
  funderid: (61803059 ,61803060); (KJQN201800603); (CXTDX201601019)资助课题
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1053-57dcad6a88af9f2cea5372ff5a9eda741530d3ac0127433b74f43054e78cba263
ISSN 1001-506X
IngestDate Thu May 29 04:00:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords visual contrast mechanism
thresh‐old segmentation
视觉对比度机制
local contrast measure
红外弱小目标
multi‐scale
阈值分割
多尺度
局部对比度
infrared weak target
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1053-57dcad6a88af9f2cea5372ff5a9eda741530d3ac0127433b74f43054e78cba263
PageCount 8
ParticipantIDs wanfang_journals_xtgcydzjs201911003
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2019
Publisher 重庆邮电大学自动化学院,重庆,400065
Publisher_xml – name: 重庆邮电大学自动化学院,重庆,400065
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.2339127
Snippet TP391.4;...
SourceID wanfang
SourceType Aggregation Database
StartPage 2416
Title 基于视觉对比度机制的红外弱小目标检测算法
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs201911003
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG7yANGD-MQ3gdjHXXe6e_oBXnr2QRDjxQRyC7PzSPCwgtmA5uRBfCDoxQeooKgYT4kiCi7-HGc3P8Oq3tmdEYNEL03RU13V1TWz_dVSXU3IeZmKFIBEXImYMhUsgFXRUtbgw4tUO021L1yd2fkrcm5RXFrylyYmP5aylta77Wq0seu5kv_xKvSBX_GU7D94diwUOoAG_0ILHoZ2Tz6mTZ-aFg0sbQpsdZM2NbWKajkiDPJY4AFCImEE9gCzldhj6m64T7WmAfQoakCOQAJ5mBsuqJFuFDB7jqhR3XLMAbVNJxl6lCM4Jk8AEYDMAHmAwbhHAafDqy5HaNhp4TRwbNCCLSgchvhuoHYSwDTtTFM4eRCLU2pQ47Rom6sDQ-w4SxmtB17rJguLYYLiiUFNaKFG87RjQTMaBQsMaDiNBtcNLXWTDxpl-TCR3-aiUF1uX_43imfy84SjFx8lwjLpRu4D9BP0MLeIZfMEOm8o2zpfwig79JPFdUGinnsl5zHUGLSI1XfRwurC4cDSHoRZbn7NXfA43qSG1cFGH6NX3nKEJ0vwBfHxblsjN9K4rRF1VMc6MLnRVLGOLS8QwThP82Z3JboVb1xbQy4sLsgnyTRTChMipm1j_vLVAnojUi2F7gDrOS_OODO8IM0roD7eWyBZERr4HgfsWoQiEAYzLH44QlUCYKy7KGk08X1kNrfqwl9sckfxOmnYWSmhxoVD5GAe7s3Y4bd7mExsrB4hB0pFQI-Si9nr3s_eo53NuzubD7Lt7_3tJ1nvQ_9VL7v_bfDizqD3Nnv_LPvxOfv0ePByq__mXv_d7f7Xh4Ot5_0vT4-RxVZzoT5Xye80qaxBJMMrvoqjMJah1mFqUhYloc8VS1M_NEkcIrzntZiHEWaECM7bSqRYlE8kSkftENb0OJnqXO8kJ8gMRDYQ_qSA5z1PmDYPeZhELGGsFkeSp_Ikmc1tX85_s9aW_3ToqT1xnSb7i4_mDJnq3lhPzgIa77bP5S_CLx-mp18
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%A7%86%E8%A7%89%E5%AF%B9%E6%AF%94%E5%BA%A6%E6%9C%BA%E5%88%B6%E7%9A%84%E7%BA%A2%E5%A4%96%E5%BC%B1%E5%B0%8F%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E8%94%A1%E5%86%9B&rft.au=%E9%BB%84%E8%A2%81%E5%9B%AD&rft.au=%E6%9D%8E%E9%B9%8F%E6%B3%BD&rft.au=%E8%B5%B5%E5%AD%90%E7%A1%95&rft.date=2019-11-01&rft.pub=%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2%2C%E9%87%8D%E5%BA%86%2C400065&rft.issn=1001-506X&rft.volume=41&rft.issue=11&rft.spage=2416&rft.epage=2423&rft_id=info:doi/10.3969%2Fj.issn.1001-506X.2019.11.03&rft.externalDocID=xtgcydzjs201911003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg