基于数据驱动的气化炉出口温度在线测量
TQ545; 为实时监控气流床气化炉的气化温度和运行状态,收集气化炉激冷系统和反应系统等系统的可测量数据,采用理论计算模型和遗传算法改进的BP(GABP)神经网络模型对气化炉出口温度进行预测,并与工业测量数据进行对比分析.结果表明,由激冷系统理论计算模型可以得到气化炉出口温度,但因测量参数敏感度低,导致温度预测精度和稳定性较差.采用GABP神经网络模型总体上可以提高预测温度的精度和稳定性,但反应系统中由于煤量波动和煤质数据缺乏等原因,导致部分区间预测误差较大;采用激冷系统参数可大幅提高绝大部分区间内温度的预测精度,预测误差保持在15 K以下,可满足不同工况下的气化炉温度实时在线监测需要....
Saved in:
Published in | 华东理工大学学报(自然科学版) Vol. 49; no. 2; pp. 168 - 175 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
华东理工大学国家能源煤气化技术研发中心, 上海煤气化工程技术研究中心, 上海 200237
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | TQ545; 为实时监控气流床气化炉的气化温度和运行状态,收集气化炉激冷系统和反应系统等系统的可测量数据,采用理论计算模型和遗传算法改进的BP(GABP)神经网络模型对气化炉出口温度进行预测,并与工业测量数据进行对比分析.结果表明,由激冷系统理论计算模型可以得到气化炉出口温度,但因测量参数敏感度低,导致温度预测精度和稳定性较差.采用GABP神经网络模型总体上可以提高预测温度的精度和稳定性,但反应系统中由于煤量波动和煤质数据缺乏等原因,导致部分区间预测误差较大;采用激冷系统参数可大幅提高绝大部分区间内温度的预测精度,预测误差保持在15 K以下,可满足不同工况下的气化炉温度实时在线监测需要. |
---|---|
ISSN: | 1006-3080 |
DOI: | 10.14135/j.cnki.1006-3080.20211116001 |