基于改进VMD和自适应BSA优化LS-SVM的刀具磨损状态监测方法
TH164; 为提高加工过程中刀具磨损状态的识别精度,结合改进的变分模态分解算法(modified variational mode decomposition,MVMD)、自适应回溯搜索算法(adaptive backtracking search algorithm,ABSA)及最小二乘支持向量机(least squares-support vector machine,LS-SVM),提出一种刀具磨损快速识别模型.针对传统信号处理方法存在的模态混叠、噪声敏感等问题,采用瞬时频率均值法预先确定最佳分解模态数,引入降噪型变分模态分解算法进行信号分解;为提高优化效率与自适应性,提出一种改进的自...
Saved in:
Published in | 北京工业大学学报 Vol. 47; no. 1; pp. 10 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
北京工业大学先进制造与智能技术研究所,北京 100124
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-0037 |
DOI | 10.11936/bjutxb2019070028 |
Cover
Summary: | TH164; 为提高加工过程中刀具磨损状态的识别精度,结合改进的变分模态分解算法(modified variational mode decomposition,MVMD)、自适应回溯搜索算法(adaptive backtracking search algorithm,ABSA)及最小二乘支持向量机(least squares-support vector machine,LS-SVM),提出一种刀具磨损快速识别模型.针对传统信号处理方法存在的模态混叠、噪声敏感等问题,采用瞬时频率均值法预先确定最佳分解模态数,引入降噪型变分模态分解算法进行信号分解;为提高优化效率与自适应性,提出一种改进的自适应回溯搜索算法,通过参数自适应选择提高算法的全局与局部搜索能力;基于自适应回溯搜索算法,采用LS-SVM多分类模型实现了刀具磨损状态的识别.实验结果表明,MVMD可以有效降低噪声、剔除虚假信息,同时验证了ABSA算法具有更强的全局探索和局部寻优能力,使得ABSA优化LS-SVM模型具有更高的准确性. |
---|---|
ISSN: | 0254-0037 |
DOI: | 10.11936/bjutxb2019070028 |