基于双流特征提取的车路协同感知方法
TP391.4; 针对自动驾驶在遮挡、超视距场景下感知不充分的问题,提出一种基于双流特征提取网络的特征级车路协同感知方法,以增强交通参与者的3D目标检测能力.根据路端与车端场景特点分别设计对应的特征提取网络:路端具有丰富且充足的感知数据和计算资源,采用Transformer结构提取更丰富、高级的特征表示;车端计算能力有限、实时性需求高,利用部分卷积(PConv)提高计算效率,引入Mamba-VSS模块实现对复杂环境的高效感知.通过置信度图指导关键感知信息共享与融合,有效实现了车路双端的协同感知.在DAIR-V2X数据集训练与测试,得到车端特征提取网络模型大小为8.1 MB,IoU阈值为0.5、...
Saved in:
Published in | 上海交通大学学报 Vol. 58; no. 11; pp. 1826 - 封3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
中国民航大学机器人研究所,天津 300300
28.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | TP391.4; 针对自动驾驶在遮挡、超视距场景下感知不充分的问题,提出一种基于双流特征提取网络的特征级车路协同感知方法,以增强交通参与者的3D目标检测能力.根据路端与车端场景特点分别设计对应的特征提取网络:路端具有丰富且充足的感知数据和计算资源,采用Transformer结构提取更丰富、高级的特征表示;车端计算能力有限、实时性需求高,利用部分卷积(PConv)提高计算效率,引入Mamba-VSS模块实现对复杂环境的高效感知.通过置信度图指导关键感知信息共享与融合,有效实现了车路双端的协同感知.在DAIR-V2X数据集训练与测试,得到车端特征提取网络模型大小为8.1 MB,IoU阈值为0.5、0.7时对应平均精度指标为67.67%、53.74%.实验验证了该方法在检测精度、模型规模方面具备的优势,为车路协同提供了一种较低配置的检测方案. |
---|---|
ISSN: | 1006-2467 |
DOI: | 10.16183/j.cnki.jsjtu.2024.239 |