融合多类型深度迁移学习的电力系统暂态稳定自适应评估
TM712; 针对不同类型人工智能网络应用于电力系统暂态稳定评估时精度和泛化能力不稳定、运行方式或拓扑结构发生较大变化时评估精度下降、重新训练新模型费时费力等问题,提出一种融合多类型深度迁移学习模型(tmDLM)的自适应评估方法,该方法融合了深度置信网络、卷积神经网络以及长短期记忆网络3种不同的深度学习模型.将训练好的各类深度学习模型作为源域模型,当运行方式或拓扑结构发生较大变化时,采用少量目标域样本集微调预训练模型,使其快速跟踪系统当前的运行状态,并得到tmDLM.新英格兰10机39节点系统和华中电网的仿真结果表明:所提方法可以充分发挥各类深度学习方法的优势,具有良好的泛化能力;六分类模型能...
Saved in:
Published in | 电力自动化设备 Vol. 43; no. 1; pp. 184 - 192 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
北京交通大学 电气工程学院,北京100044%中国长江三峡集团有限公司科学技术研究院,北京100038%国家电网公司华中分部,湖北武汉430077
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | TM712; 针对不同类型人工智能网络应用于电力系统暂态稳定评估时精度和泛化能力不稳定、运行方式或拓扑结构发生较大变化时评估精度下降、重新训练新模型费时费力等问题,提出一种融合多类型深度迁移学习模型(tmDLM)的自适应评估方法,该方法融合了深度置信网络、卷积神经网络以及长短期记忆网络3种不同的深度学习模型.将训练好的各类深度学习模型作为源域模型,当运行方式或拓扑结构发生较大变化时,采用少量目标域样本集微调预训练模型,使其快速跟踪系统当前的运行状态,并得到tmDLM.新英格兰10机39节点系统和华中电网的仿真结果表明:所提方法可以充分发挥各类深度学习方法的优势,具有良好的泛化能力;六分类模型能够在判稳的同时进行稳定裕度/失稳程度等级的评估;经过迁移后的深度学习模型具有良好的评估精度和时效性,大幅缩短了模型更新时间,实现了电力系统暂态稳定的自适应评估. |
---|---|
ISSN: | 1006-6047 |
DOI: | 10.16081/j.epae.202206002 |