基于改进WGAN考虑特征分布相似性的小样本负荷预测方法
对于综合能源系统中新接入用户,其往往由于历史数据匮乏而难以建立精准的短期负荷预测模型.本文基于迁移学习理论,提出了一种基于改进Wasserstein生成对抗网络(WGAN)的小样本负荷预测方法.首先,本文采用最大信息系数法量化各影响特征与负荷的相关性强弱.接着,将源域特征序列进行分割,计算各分割子序列与目标域小样本的实序列编辑距离确定初始源域.然后,引入卷积神经网络和长短期记忆模型建立源域预测网络.通过WGAN对齐目标域和源域负荷特征的空间分布,并在最优传输代价函数中加入局部特征损失以提高训练的稳定性和快速性.最后,将对抗训练后网络用于目标域负荷预测.采用该方法对某地区小样本负荷进行实验,结果...
Saved in:
Published in | 控制理论与应用 Vol. 41; no. 4; pp. 597 - 608 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
华南理工大学自动化科学与工程学院,广东广州 510640%华南理工大学电力学院,广东广州 510640
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-8152 |
DOI | 10.7641/CTA.2023.20876 |
Cover
Loading…
Summary: | 对于综合能源系统中新接入用户,其往往由于历史数据匮乏而难以建立精准的短期负荷预测模型.本文基于迁移学习理论,提出了一种基于改进Wasserstein生成对抗网络(WGAN)的小样本负荷预测方法.首先,本文采用最大信息系数法量化各影响特征与负荷的相关性强弱.接着,将源域特征序列进行分割,计算各分割子序列与目标域小样本的实序列编辑距离确定初始源域.然后,引入卷积神经网络和长短期记忆模型建立源域预测网络.通过WGAN对齐目标域和源域负荷特征的空间分布,并在最优传输代价函数中加入局部特征损失以提高训练的稳定性和快速性.最后,将对抗训练后网络用于目标域负荷预测.采用该方法对某地区小样本负荷进行实验,结果表明,本文所提算法与其他预测模型相比能达到更高精度. |
---|---|
ISSN: | 1000-8152 |
DOI: | 10.7641/CTA.2023.20876 |