基于NaN-Bicluster SMOTE的非均衡信贷数据分类研究及应用

TP181; 为了有效评估非均衡信贷数据中的借款人信用风险,基于合成少数过采样技术(Synthetic minority oversampling technique,SMOTE)、自然近邻(Natural neighbor,NaN)和双聚类(Bicluster)构建了NaN-Bicluster SMOTE方法以改进SMOTE.首先使用无参数的自然近邻设定采样样本选取的逻辑规则,规避了r近邻划分样本时产生的不稳定性;其次基于自然近邻稳定结构规定安全范围设定的逻辑规则,避免合成样本成为噪声样本;然后使用双聚类挖掘局部规则,以合成样本继承局部规则的方式改进SMOTE合成公式;最后,在Prosper...

Full description

Saved in:
Bibliographic Details
Published in数据采集与处理 Vol. 38; no. 6; pp. 1482 - 1494
Main Authors 何亮, 徐海燕, 陈璐
Format Journal Article
LanguageChinese
Published 南京航空航天大学经济与管理学院,南京 211106 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:TP181; 为了有效评估非均衡信贷数据中的借款人信用风险,基于合成少数过采样技术(Synthetic minority oversampling technique,SMOTE)、自然近邻(Natural neighbor,NaN)和双聚类(Bicluster)构建了NaN-Bicluster SMOTE方法以改进SMOTE.首先使用无参数的自然近邻设定采样样本选取的逻辑规则,规避了r近邻划分样本时产生的不稳定性;其次基于自然近邻稳定结构规定安全范围设定的逻辑规则,避免合成样本成为噪声样本;然后使用双聚类挖掘局部规则,以合成样本继承局部规则的方式改进SMOTE合成公式;最后,在Prosper小额贷款平台的非均衡信贷数据集上将NaN-Bicluster SMOTE与若干采样方法和机器学习模型进行对比分析,并进一步使用统计检验方法验证其性能的优越性.
ISSN:1004-9037
DOI:10.16337/j.1004-9037.2023.06.021