考虑广义需求侧资源的深度置信网络短期负荷预测方法
随着智能电网信息化水平的不断提高以及可控负荷、分布式电源和储能等广义需求侧资源的大量接入,将产生海量负荷数据集并改变负荷特性.为了提高负荷预测精度,提出了一种考虑广义需求侧资源的深度置信网络(DBN)负荷预测方法.首先,借助负荷聚合商确定了广义需求侧资源参与电力市场的机制,构建了基于合同的广义需求侧资源调度模型,并利用该模型求解广义需求侧资源参与电力市场的最优调度计划.其次,引入DBN结构,并将广义需求侧资源的最优调度计划作为其输入量,建立了短期负荷预测模型.最后,以实际数据进行仿真测试,结果表明,本文所提方法具有更高的预测精度....
Saved in:
Published in | 控制理论与应用 Vol. 40; no. 3; pp. 493 - 501 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
合肥工业大学电气与自动化工程学院,安徽合肥230009
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-8152 |
DOI | 10.7641/CTA.2021.10209 |
Cover
Abstract | 随着智能电网信息化水平的不断提高以及可控负荷、分布式电源和储能等广义需求侧资源的大量接入,将产生海量负荷数据集并改变负荷特性.为了提高负荷预测精度,提出了一种考虑广义需求侧资源的深度置信网络(DBN)负荷预测方法.首先,借助负荷聚合商确定了广义需求侧资源参与电力市场的机制,构建了基于合同的广义需求侧资源调度模型,并利用该模型求解广义需求侧资源参与电力市场的最优调度计划.其次,引入DBN结构,并将广义需求侧资源的最优调度计划作为其输入量,建立了短期负荷预测模型.最后,以实际数据进行仿真测试,结果表明,本文所提方法具有更高的预测精度. |
---|---|
AbstractList | 随着智能电网信息化水平的不断提高以及可控负荷、分布式电源和储能等广义需求侧资源的大量接入,将产生海量负荷数据集并改变负荷特性.为了提高负荷预测精度,提出了一种考虑广义需求侧资源的深度置信网络(DBN)负荷预测方法.首先,借助负荷聚合商确定了广义需求侧资源参与电力市场的机制,构建了基于合同的广义需求侧资源调度模型,并利用该模型求解广义需求侧资源参与电力市场的最优调度计划.其次,引入DBN结构,并将广义需求侧资源的最优调度计划作为其输入量,建立了短期负荷预测模型.最后,以实际数据进行仿真测试,结果表明,本文所提方法具有更高的预测精度. |
Author | 唐昊 吕凯 胡实 杨晨芳 |
AuthorAffiliation | 合肥工业大学电气与自动化工程学院,安徽合肥230009 |
AuthorAffiliation_xml | – name: 合肥工业大学电气与自动化工程学院,安徽合肥230009 |
Author_FL | HU Shi Lü Kai TANG Hao YANG Chen-fang |
Author_FL_xml | – sequence: 1 fullname: HU Shi – sequence: 2 fullname: TANG Hao – sequence: 3 fullname: Lü Kai – sequence: 4 fullname: YANG Chen-fang |
Author_xml | – sequence: 1 fullname: 胡实 – sequence: 2 fullname: 唐昊 – sequence: 3 fullname: 吕凯 – sequence: 4 fullname: 杨晨芳 |
BookMark | eNotz71Kw1AcBfA7VLDWrj6DS-r_fiT3ZixBrVBwqXO5-RI1pGAQqVPRLCKCHRSUQNBBJ4WipbRS-zLtTfoWBnQ6w4Hz46yhUtgJPYQ2MNS4wfCW1arXCBBcw0DALKEyBgBNYJ2somoUHdkAuKi4jsuokfeu8sf-Yjybj6-XSU8NLuc_b_kwVpO77ClWo8Fi8ppNP-az52zaz76TLH1XSZp_pfntaPkSq-GNehirz_t1tOLLIPKq_1lBBzvbLauhNfd396x6U4swUNAwoa7pCtd0mAAqwKdcelIH6VHCsS6oaxPPEcBt6hiSgcOlazDHAcm4AGbQCtr82z2XoS_Dw_Zx5-w0LMT2yUUQdLvd4jktpEL7BWPvaUo |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.7641/CTA.2021.10209 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Short-term load forecasting method of deep belief network by considering generalized demand-side resources |
EndPage | 501 |
ExternalDocumentID | kzllyyy202303010 |
GrantInformation_xml | – fundername: 国家电网有限公司总部科技项目(SGTYHT/19-JS-215) |
GroupedDBID | -01 -0Y 2B. 4A8 5XA 5XJ 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CCVFK CUBFJ CW9 PSX TCJ TGT U1G U5S UY8 |
ID | FETCH-LOGICAL-s1030-123d9d8d9c480380f37aea50ae3271583db2ec807b3c6a40c7ad64cc0a4780463 |
ISSN | 1000-8152 |
IngestDate | Thu May 29 04:08:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 深度置信网络 广义需求侧资源 负荷聚合商 短期负荷预测 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1030-123d9d8d9c480380f37aea50ae3271583db2ec807b3c6a40c7ad64cc0a4780463 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_kzllyyy202303010 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 控制理论与应用 |
PublicationTitle_FL | Control Theory & Applications |
PublicationYear | 2023 |
Publisher | 合肥工业大学电气与自动化工程学院,安徽合肥230009 |
Publisher_xml | – name: 合肥工业大学电气与自动化工程学院,安徽合肥230009 |
SSID | ssib001102751 ssib002258297 ssib023646306 ssib057620041 ssib051372463 ssj0042201 ssib023167526 |
Score | 2.3712273 |
Snippet | ... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 493 |
Title | 考虑广义需求侧资源的深度置信网络短期负荷预测方法 |
URI | https://d.wanfangdata.com.cn/periodical/kzllyyy202303010 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFI_2cYED4lN8a0j4mJH4I7GPTptqQowLm7TblCYtSExFYtthO03QC0JI7AASaNIEBziBNME0bWjsf-Bv6NLuv-A9J23SwWFwiV7s5-eff7Zju7WfLeu2iw5POEtsT0rPhvGY2krEjp00hEhkHdK4eN55-r43Ncvvzom5kdFfpV1Ly0v1yXj1r-dK_qdWIQzqFU_J_kPNDoxCAMhQv_CEGobnieqYhBJ3KkiGglJEuSQUJFAkqJGQoyAVCSG8gmqhRwKXSGqiQqJ9TBUIIrmJ0kSBjk-U7of4qI8GNdEeRgVVokOTvEa0m4eoTAgwF0wOUVVMDq8gYxY8F2QVbQIeTftZQO6BUfYQLYYwkl2H2Z8xY6DM0IIyWDNIAKr00CbgAXgISaJahlZxo8OJHmzUNfkzg1pgIhUWMQJVlSFIgZYeinEAj8naJ7pWxIAqkCGNoIyAKQF--WcUyop9ZKbh5xZlpk6JNqaBFBRMGYB9BMjzAgOVGfWAEMhCghxTvEGBpUFmUkH-CASEChJaWPYxHIkeGFQGNYUOlvOBDUVgs4Aa_QMkLCAdR5XGL3QUIF0xNMBl_rDyjsxKoxXPLqfMJz4io-P4mOp7HMfUyoyeBN5c9PWR5zjsp_zx6sLCysoKcovLbGfUGqe-j1snxnV1-t6DYpLu4l_lpUkjFXi-u_9O0TeDKBYFeMOBx4q9AMJlPi3d4QALZvwmDDZ2cUrNpecDKjJXrViMO8OFMOf0Ws2o9bA0pZw5a53J14ITOuvY56yR1UfnrdMlD6EXrKne2vPeu_XD3YPO7oujjbV061nn5-fedjvde9193053tg73PnX3v3YOPnT317s_NrqbX9KNzd73zd6rnaOP7XT7Zfp2N_325qI1WwtnKlN2fvmJvYg3_9kwo0xUIhMVc-kw6TSZHzUi4UQNRn1XSJbUaSOWjl9nsRdxJ_ajxONx7EQcfYp57JI11nrSaly2JuqJagpYduDNGNxNVNR0YiGbwHuUSDByxbqV8zCff9wW54_X5tUT6FyzThU967o1tvR0uXEDpuxL9Zt5G_gNhkux7Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%80%83%E8%99%91%E5%B9%BF%E4%B9%89%E9%9C%80%E6%B1%82%E4%BE%A7%E8%B5%84%E6%BA%90%E7%9A%84%E6%B7%B1%E5%BA%A6%E7%BD%AE%E4%BF%A1%E7%BD%91%E7%BB%9C%E7%9F%AD%E6%9C%9F%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E8%83%A1%E5%AE%9E&rft.au=%E5%94%90%E6%98%8A&rft.au=%E5%90%95%E5%87%AF&rft.au=%E6%9D%A8%E6%99%A8%E8%8A%B3&rft.date=2023-03-01&rft.pub=%E5%90%88%E8%82%A5%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E8%87%AA%E5%8A%A8%E5%8C%96%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD%E5%90%88%E8%82%A5230009&rft.issn=1000-8152&rft.volume=40&rft.issue=3&rft.spage=493&rft.epage=501&rft_id=info:doi/10.7641%2FCTA.2021.10209&rft.externalDocID=kzllyyy202303010 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg |