考虑广义需求侧资源的深度置信网络短期负荷预测方法

随着智能电网信息化水平的不断提高以及可控负荷、分布式电源和储能等广义需求侧资源的大量接入,将产生海量负荷数据集并改变负荷特性.为了提高负荷预测精度,提出了一种考虑广义需求侧资源的深度置信网络(DBN)负荷预测方法.首先,借助负荷聚合商确定了广义需求侧资源参与电力市场的机制,构建了基于合同的广义需求侧资源调度模型,并利用该模型求解广义需求侧资源参与电力市场的最优调度计划.其次,引入DBN结构,并将广义需求侧资源的最优调度计划作为其输入量,建立了短期负荷预测模型.最后,以实际数据进行仿真测试,结果表明,本文所提方法具有更高的预测精度....

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 40; no. 3; pp. 493 - 501
Main Authors 胡实, 唐昊, 吕凯, 杨晨芳
Format Journal Article
LanguageChinese
Published 合肥工业大学电气与自动化工程学院,安徽合肥230009 01.03.2023
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2021.10209

Cover

Abstract 随着智能电网信息化水平的不断提高以及可控负荷、分布式电源和储能等广义需求侧资源的大量接入,将产生海量负荷数据集并改变负荷特性.为了提高负荷预测精度,提出了一种考虑广义需求侧资源的深度置信网络(DBN)负荷预测方法.首先,借助负荷聚合商确定了广义需求侧资源参与电力市场的机制,构建了基于合同的广义需求侧资源调度模型,并利用该模型求解广义需求侧资源参与电力市场的最优调度计划.其次,引入DBN结构,并将广义需求侧资源的最优调度计划作为其输入量,建立了短期负荷预测模型.最后,以实际数据进行仿真测试,结果表明,本文所提方法具有更高的预测精度.
AbstractList 随着智能电网信息化水平的不断提高以及可控负荷、分布式电源和储能等广义需求侧资源的大量接入,将产生海量负荷数据集并改变负荷特性.为了提高负荷预测精度,提出了一种考虑广义需求侧资源的深度置信网络(DBN)负荷预测方法.首先,借助负荷聚合商确定了广义需求侧资源参与电力市场的机制,构建了基于合同的广义需求侧资源调度模型,并利用该模型求解广义需求侧资源参与电力市场的最优调度计划.其次,引入DBN结构,并将广义需求侧资源的最优调度计划作为其输入量,建立了短期负荷预测模型.最后,以实际数据进行仿真测试,结果表明,本文所提方法具有更高的预测精度.
Author 唐昊
吕凯
胡实
杨晨芳
AuthorAffiliation 合肥工业大学电气与自动化工程学院,安徽合肥230009
AuthorAffiliation_xml – name: 合肥工业大学电气与自动化工程学院,安徽合肥230009
Author_FL HU Shi
Lü Kai
TANG Hao
YANG Chen-fang
Author_FL_xml – sequence: 1
  fullname: HU Shi
– sequence: 2
  fullname: TANG Hao
– sequence: 3
  fullname: Lü Kai
– sequence: 4
  fullname: YANG Chen-fang
Author_xml – sequence: 1
  fullname: 胡实
– sequence: 2
  fullname: 唐昊
– sequence: 3
  fullname: 吕凯
– sequence: 4
  fullname: 杨晨芳
BookMark eNotz71Kw1AcBfA7VLDWrj6DS-r_fiT3ZixBrVBwqXO5-RI1pGAQqVPRLCKCHRSUQNBBJ4WipbRS-zLtTfoWBnQ6w4Hz46yhUtgJPYQ2MNS4wfCW1arXCBBcw0DALKEyBgBNYJ2somoUHdkAuKi4jsuokfeu8sf-Yjybj6-XSU8NLuc_b_kwVpO77ClWo8Fi8ppNP-az52zaz76TLH1XSZp_pfntaPkSq-GNehirz_t1tOLLIPKq_1lBBzvbLauhNfd396x6U4swUNAwoa7pCtd0mAAqwKdcelIH6VHCsS6oaxPPEcBt6hiSgcOlazDHAcm4AGbQCtr82z2XoS_Dw_Zx5-w0LMT2yUUQdLvd4jktpEL7BWPvaUo
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7641/CTA.2021.10209
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Short-term load forecasting method of deep belief network by considering generalized demand-side resources
EndPage 501
ExternalDocumentID kzllyyy202303010
GrantInformation_xml – fundername: 国家电网有限公司总部科技项目(SGTYHT/19-JS-215)
GroupedDBID -01
-0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
UY8
ID FETCH-LOGICAL-s1030-123d9d8d9c480380f37aea50ae3271583db2ec807b3c6a40c7ad64cc0a4780463
ISSN 1000-8152
IngestDate Thu May 29 04:08:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 深度置信网络
广义需求侧资源
负荷聚合商
短期负荷预测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1030-123d9d8d9c480380f37aea50ae3271583db2ec807b3c6a40c7ad64cc0a4780463
PageCount 9
ParticipantIDs wanfang_journals_kzllyyy202303010
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle 控制理论与应用
PublicationTitle_FL Control Theory & Applications
PublicationYear 2023
Publisher 合肥工业大学电气与自动化工程学院,安徽合肥230009
Publisher_xml – name: 合肥工业大学电气与自动化工程学院,安徽合肥230009
SSID ssib001102751
ssib002258297
ssib023646306
ssib057620041
ssib051372463
ssj0042201
ssib023167526
Score 2.3712273
Snippet ...
SourceID wanfang
SourceType Aggregation Database
StartPage 493
Title 考虑广义需求侧资源的深度置信网络短期负荷预测方法
URI https://d.wanfangdata.com.cn/periodical/kzllyyy202303010
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFI_2cYED4lN8a0j4mJH4I7GPTptqQowLm7TblCYtSExFYtthO03QC0JI7AASaNIEBziBNME0bWjsf-Bv6NLuv-A9J23SwWFwiV7s5-eff7Zju7WfLeu2iw5POEtsT0rPhvGY2krEjp00hEhkHdK4eN55-r43Ncvvzom5kdFfpV1Ly0v1yXj1r-dK_qdWIQzqFU_J_kPNDoxCAMhQv_CEGobnieqYhBJ3KkiGglJEuSQUJFAkqJGQoyAVCSG8gmqhRwKXSGqiQqJ9TBUIIrmJ0kSBjk-U7of4qI8GNdEeRgVVokOTvEa0m4eoTAgwF0wOUVVMDq8gYxY8F2QVbQIeTftZQO6BUfYQLYYwkl2H2Z8xY6DM0IIyWDNIAKr00CbgAXgISaJahlZxo8OJHmzUNfkzg1pgIhUWMQJVlSFIgZYeinEAj8naJ7pWxIAqkCGNoIyAKQF--WcUyop9ZKbh5xZlpk6JNqaBFBRMGYB9BMjzAgOVGfWAEMhCghxTvEGBpUFmUkH-CASEChJaWPYxHIkeGFQGNYUOlvOBDUVgs4Aa_QMkLCAdR5XGL3QUIF0xNMBl_rDyjsxKoxXPLqfMJz4io-P4mOp7HMfUyoyeBN5c9PWR5zjsp_zx6sLCysoKcovLbGfUGqe-j1snxnV1-t6DYpLu4l_lpUkjFXi-u_9O0TeDKBYFeMOBx4q9AMJlPi3d4QALZvwmDDZ2cUrNpecDKjJXrViMO8OFMOf0Ws2o9bA0pZw5a53J14ITOuvY56yR1UfnrdMlD6EXrKne2vPeu_XD3YPO7oujjbV061nn5-fedjvde9193053tg73PnX3v3YOPnT317s_NrqbX9KNzd73zd6rnaOP7XT7Zfp2N_325qI1WwtnKlN2fvmJvYg3_9kwo0xUIhMVc-kw6TSZHzUi4UQNRn1XSJbUaSOWjl9nsRdxJ_ajxONx7EQcfYp57JI11nrSaly2JuqJagpYduDNGNxNVNR0YiGbwHuUSDByxbqV8zCff9wW54_X5tUT6FyzThU967o1tvR0uXEDpuxL9Zt5G_gNhkux7Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%80%83%E8%99%91%E5%B9%BF%E4%B9%89%E9%9C%80%E6%B1%82%E4%BE%A7%E8%B5%84%E6%BA%90%E7%9A%84%E6%B7%B1%E5%BA%A6%E7%BD%AE%E4%BF%A1%E7%BD%91%E7%BB%9C%E7%9F%AD%E6%9C%9F%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E8%83%A1%E5%AE%9E&rft.au=%E5%94%90%E6%98%8A&rft.au=%E5%90%95%E5%87%AF&rft.au=%E6%9D%A8%E6%99%A8%E8%8A%B3&rft.date=2023-03-01&rft.pub=%E5%90%88%E8%82%A5%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E8%87%AA%E5%8A%A8%E5%8C%96%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD%E5%90%88%E8%82%A5230009&rft.issn=1000-8152&rft.volume=40&rft.issue=3&rft.spage=493&rft.epage=501&rft_id=info:doi/10.7641%2FCTA.2021.10209&rft.externalDocID=kzllyyy202303010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg