考虑广义需求侧资源的深度置信网络短期负荷预测方法

随着智能电网信息化水平的不断提高以及可控负荷、分布式电源和储能等广义需求侧资源的大量接入,将产生海量负荷数据集并改变负荷特性.为了提高负荷预测精度,提出了一种考虑广义需求侧资源的深度置信网络(DBN)负荷预测方法.首先,借助负荷聚合商确定了广义需求侧资源参与电力市场的机制,构建了基于合同的广义需求侧资源调度模型,并利用该模型求解广义需求侧资源参与电力市场的最优调度计划.其次,引入DBN结构,并将广义需求侧资源的最优调度计划作为其输入量,建立了短期负荷预测模型.最后,以实际数据进行仿真测试,结果表明,本文所提方法具有更高的预测精度....

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 40; no. 3; pp. 493 - 501
Main Authors 胡实, 唐昊, 吕凯, 杨晨芳
Format Journal Article
LanguageChinese
Published 合肥工业大学电气与自动化工程学院,安徽合肥230009 01.03.2023
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2021.10209

Cover

More Information
Summary:随着智能电网信息化水平的不断提高以及可控负荷、分布式电源和储能等广义需求侧资源的大量接入,将产生海量负荷数据集并改变负荷特性.为了提高负荷预测精度,提出了一种考虑广义需求侧资源的深度置信网络(DBN)负荷预测方法.首先,借助负荷聚合商确定了广义需求侧资源参与电力市场的机制,构建了基于合同的广义需求侧资源调度模型,并利用该模型求解广义需求侧资源参与电力市场的最优调度计划.其次,引入DBN结构,并将广义需求侧资源的最优调度计划作为其输入量,建立了短期负荷预测模型.最后,以实际数据进行仿真测试,结果表明,本文所提方法具有更高的预测精度.
ISSN:1000-8152
DOI:10.7641/CTA.2021.10209