一类双扩散对流方程组的解对Lewis系数的连续依赖性研究
O175; 研究了有界区域内多孔介质中一类双扩散扰动模型的解的结构稳定性.首先得到了一些有用的先验估计,然后利用这些先验估计构建了解的差所满足的一阶微分不等式,最后通过积分该微分不等式,建立了解对Lewis系数Le的连续依赖性结果.该结果表明,用双扩散扰动模型描述多孔介质中的流体流动是准确的....
Saved in:
Published in | 浙江大学学报(理学版) Vol. 49; no. 3; pp. 300 - 307 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
广东金融学院 互联网金融与信息工程学院,广东 广州 510521
25.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1008-9497 |
DOI | 10.3785/j.issn.1008-9497.2022.03.006 |
Cover
Summary: | O175; 研究了有界区域内多孔介质中一类双扩散扰动模型的解的结构稳定性.首先得到了一些有用的先验估计,然后利用这些先验估计构建了解的差所满足的一阶微分不等式,最后通过积分该微分不等式,建立了解对Lewis系数Le的连续依赖性结果.该结果表明,用双扩散扰动模型描述多孔介质中的流体流动是准确的. |
---|---|
ISSN: | 1008-9497 |
DOI: | 10.3785/j.issn.1008-9497.2022.03.006 |