图像分割算法在肉鸡深度图集上的研究

TP391; [目的]针对在复杂环境背景中难以识别分割多只肉鸡的问题,探讨基于深度学习实现对多只肉鸡深度图像分割的方法.[方法]利用深度相机,通过不同的拍摄角度(俯视、正视、侧视)在自然环境下采集肉鸡不同姿势(站立、俯卧、抬头、低头等)形态的深度图像,并使用CVAT标注软件对深度图像进行精确标注,建立肉鸡深度图数据集(含4058张深度图像).利用FCN、U-Net、PSPNet、DeepLab和Mask R-CNN等5种神经网络实现肉鸡深度图像的识别与分割,根据测试集得到预测结果,比较与评估不同模型的性能,实现对肉鸡深度图像的识别与分割.[结果]基于Mask R-CNN神经网络模型的识别分割准...

Full description

Saved in:
Bibliographic Details
Published in广东农业科学 Vol. 49; no. 1; pp. 159 - 166
Main Authors 李西明, 赵泽勇, 吴精乙, 黄永鼎, 高月芳, 温嘉勇
Format Journal Article
LanguageChinese
Published 华南农业大学数学与信息学院,广东 广州 510642 2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:TP391; [目的]针对在复杂环境背景中难以识别分割多只肉鸡的问题,探讨基于深度学习实现对多只肉鸡深度图像分割的方法.[方法]利用深度相机,通过不同的拍摄角度(俯视、正视、侧视)在自然环境下采集肉鸡不同姿势(站立、俯卧、抬头、低头等)形态的深度图像,并使用CVAT标注软件对深度图像进行精确标注,建立肉鸡深度图数据集(含4058张深度图像).利用FCN、U-Net、PSPNet、DeepLab和Mask R-CNN等5种神经网络实现肉鸡深度图像的识别与分割,根据测试集得到预测结果,比较与评估不同模型的性能,实现对肉鸡深度图像的识别与分割.[结果]基于Mask R-CNN神经网络模型的识别分割准确率为98.96%,召回率为97.78%,调和平均数为95.03%,交并比为94.69%,4个指标值均为5个模型中的最优值.[结论]基于Mask R-CNN神经网络的算法简单快速,且能准确实现肉鸡的自动识别与分割,对肉鸡遮挡有较佳的鲁棒性,基本可以满足养殖场鸡群均匀度预测的识别分割要求.促进了计算机视觉在现代农业的应用,可为鸡群计数、鸡群均匀度预测以及肉鸡福利饲养等鸡场作业提供理论和实践基础.
ISSN:1004-874X
DOI:10.16768/j.issn.1004-874X.2022.01.019