基于无人机遥感影像监测土地整治项目道路沟渠利用情况
P23%S28; 为客观监测和有效评价土地整治项目基础设施建后利用情况,初步探讨利用无人机航拍影像结合智能算法识别设施利用状态的可能性,该文选取典型项目,利用多旋翼无人机航拍获取高分辨率影像,提取田间道路和骨干沟渠影像网格切片,通过BoW模型构建典型地物样本特征库基于样本纹理特征进行分类,利用支持向量机模型对研究区骨干线状基础设施利用状况进行识别,并依据目视解译和实地勘察对识别结果进行了精度验证.结果显示无人机遥感方法可以初步识别研究区基础设施建后利用情况;研究区田间道路病害和骨干沟渠淤塞情况识别总体分类精度达到80%和70%;田间道路分类误差主要来自通行不畅与路面裂缝,骨干沟渠分类误差主要来...
Saved in:
Published in | 农业工程学报 Vol. 34; no. 23; pp. 85 - 93 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
江苏省土地开发整理技术工程中心,南京 210023%国土资源部土地整治中心,北京,100035
01.12.2018
南京大学地理与海洋科学学院,南京,210023%南京大学地理与海洋科学学院,南京 210023 国土资源部海岸带开发与保护重点实验室,南京 210023 |
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2018.23.010 |
Cover
Summary: | P23%S28; 为客观监测和有效评价土地整治项目基础设施建后利用情况,初步探讨利用无人机航拍影像结合智能算法识别设施利用状态的可能性,该文选取典型项目,利用多旋翼无人机航拍获取高分辨率影像,提取田间道路和骨干沟渠影像网格切片,通过BoW模型构建典型地物样本特征库基于样本纹理特征进行分类,利用支持向量机模型对研究区骨干线状基础设施利用状况进行识别,并依据目视解译和实地勘察对识别结果进行了精度验证.结果显示无人机遥感方法可以初步识别研究区基础设施建后利用情况;研究区田间道路病害和骨干沟渠淤塞情况识别总体分类精度达到80%和70%;田间道路分类误差主要来自通行不畅与路面裂缝,骨干沟渠分类误差主要来自轻度淤塞;提高影像精度情况下,田间道路利用状况识别精度有所提升但不显著,骨干沟渠通畅状况识别精度无明显变化,模型对宽度2 m以下沟渠识别结果精度较差.研究表明,基于无人机遥感对土地整治项目基础设施利用情况进行自动分类识别具有可行性且效率较高,而监测精度有待于后期进一步提升. |
---|---|
ISSN: | 1002-6819 |
DOI: | 10.11975/j.issn.1002-6819.2018.23.010 |