基于突触巩固机制的前馈小世界神经网络设计
小世界神经网络具有较快的收敛速度和优越的容错性,近年来得到广泛关注.然而,在网络构造过程中,随机重连可能造成重要信息丢失,进而导致网络精度下降.针对该问题,基于Watts-Strogatz(WS)型小世界神经网络,提出了一种基于突触巩固机制的前馈小世界神经网络(Feedforward small-world neural network based on synaptic consolidation,FSWNN-SC).首先,使用网络正则化方法对规则前馈神经网络进行预训练,基于突触巩固机制,断开网络不重要的权值连接,保留重要的连接权值;其次,设计重连规则构造小世界神经网络,在保证网络小世界属性...
Saved in:
Published in | 自动化学报 Vol. 49; no. 10; pp. 2145 - 2158 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
智能感知与自主控制教育部工程研究中心 北京 100124
2023
智慧环保北京实验室 北京 100124 北京人工智能研究院 北京 100124 计算智能与智能系统北京市重点实验室 北京 100124 北京工业大学信息学部 北京 100124 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 小世界神经网络具有较快的收敛速度和优越的容错性,近年来得到广泛关注.然而,在网络构造过程中,随机重连可能造成重要信息丢失,进而导致网络精度下降.针对该问题,基于Watts-Strogatz(WS)型小世界神经网络,提出了一种基于突触巩固机制的前馈小世界神经网络(Feedforward small-world neural network based on synaptic consolidation,FSWNN-SC).首先,使用网络正则化方法对规则前馈神经网络进行预训练,基于突触巩固机制,断开网络不重要的权值连接,保留重要的连接权值;其次,设计重连规则构造小世界神经网络,在保证网络小世界属性的同时实现网络稀疏化,并使用梯度下降算法训练网络;最后,通过4个UCI基准数据集和2个真实数据集进行模型性能测试,并使用Wilcoxon符号秩检验对对比模型进行显著性差异检验.实验结果表明:所提出的FSWNN-SC模型在获得紧凑的网络结构的同时,其精度显著优于规则前馈神经网络及其他WS型小世界神经网络. |
---|---|
ISSN: | 0254-4156 |
DOI: | 10.16383/j.aas.c220638 |