独立RNN和胶囊网络的维吾尔语事件缺失元素填充

提出了注意力机制独立循环神经网络和胶囊网络并行的维吾尔语事件缺失元素填充模型(Att_IndRNN_CapsNet).首先,抽取18项事件和事件元素的内部特征,作为结合注意力机制的独立循环神经网络模型的输入,进一步获取高阶特征;同时,引入词嵌入技术将事件触发词和候选元素映射为词向量,通过胶囊网络挖掘事件和事件元素的上下文语义特征;然后,将两种特征融合,作为分类器的输入,进而完成事件缺失元素的填充.实验结果表明,该方法用于维吾尔语事件缺失元素填充准确率为86.94%,召回率为84.14%,衡量模型整体性能的F1值为85.52%,从而证明了该方法在维吾尔语事件缺失元素填充上的有效性....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 47; no. 4; pp. 903 - 912
Main Authors 王县县, 禹龙, 田生伟, 王瑞锦
Format Journal Article
LanguageChinese
Published 新疆大学软件学院 乌鲁木齐830008%新疆大学网络中心 乌鲁木齐830046%电子科技大学信息与软件工程学院 成都610054 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:提出了注意力机制独立循环神经网络和胶囊网络并行的维吾尔语事件缺失元素填充模型(Att_IndRNN_CapsNet).首先,抽取18项事件和事件元素的内部特征,作为结合注意力机制的独立循环神经网络模型的输入,进一步获取高阶特征;同时,引入词嵌入技术将事件触发词和候选元素映射为词向量,通过胶囊网络挖掘事件和事件元素的上下文语义特征;然后,将两种特征融合,作为分类器的输入,进而完成事件缺失元素的填充.实验结果表明,该方法用于维吾尔语事件缺失元素填充准确率为86.94%,召回率为84.14%,衡量模型整体性能的F1值为85.52%,从而证明了该方法在维吾尔语事件缺失元素填充上的有效性.
ISSN:0254-4156
DOI:10.16383/j.aas.c180655