基于SVMD-CMSEE与GSA-SVM的新型电力系统变压器故障状态智能诊断方法
TM411; 新型电力系统在促进"碳中和,碳达峰"的目标实现的同时,对电力系统中变电设备的可靠运行提出了新的挑战.为进一步提高变压器机械故障的识别精度,文中从变压器的振动特性出发,提出一种基于SVMD-CMSEE与GSA-SVM的新型电力系统变压器故障状态智能诊断方法.采用逐次变分模态分解(suc-cessive variational modal decomposition,SVMD)算法自适应性地分解出变压器振动信号的各模态分量,联合复合多尺度能量熵(combining compound multi-scale energy entropy,CMSEE)提取了振动信号的...
Saved in:
Published in | 电测与仪表 Vol. 61; no. 12; pp. 17 - 25 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
上海电力大学电气工程学院,上海 200090
15.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | TM411; 新型电力系统在促进"碳中和,碳达峰"的目标实现的同时,对电力系统中变电设备的可靠运行提出了新的挑战.为进一步提高变压器机械故障的识别精度,文中从变压器的振动特性出发,提出一种基于SVMD-CMSEE与GSA-SVM的新型电力系统变压器故障状态智能诊断方法.采用逐次变分模态分解(suc-cessive variational modal decomposition,SVMD)算法自适应性地分解出变压器振动信号的各模态分量,联合复合多尺度能量熵(combining compound multi-scale energy entropy,CMSEE)提取了振动信号的时频分布变化特征,并引人类间区分度确定了特征中的最优特征子集,通过引力搜索算法(gravity search algorithm,GSA)对支持向量机(support vector machine,SVM)的关键参数进行优化,构造了基于GSA-SVM的变压器故障识别模型.对某10 kV油浸式变压器振动信号的计算结果表明:基于SVMD-CMSEE算法得到的变压器振动信号复合特征能有效估计时间序列的动态变化,所提出的GSA-SVM诊断模型具有较高的识别精度和计算效率,准确率可达98%,从而为基于振动信号的变压器状态监测提供了技术支撑. |
---|---|
ISSN: | 1001-1390 |
DOI: | 10.19753/j.issn1001-1390.2024.12.003 |