多阶段注意力胶囊网络的图像分类

针对传统的胶囊网络(Capsule network,CapsNet)特征提取不充分的问题,提出一种图像分类的多阶段注意力胶囊网络模型.首先,在卷积层对低层特征和高层特征分别采用注意力(Spatial attention,SA)和通道注意力(Channel attention,CA)来提取有效特征;然后,提出基于向量的注意力(Vector attention,VA)机制作用于动态路由层,增加对重要胶囊的关注,进而提高低层胶囊对高层胶囊预测的准确性;最后,在五个公共数据集上进行图像分类的对比实验.结果表明,所提出的CapsNet模型在分类精度和鲁棒性上优于其他胶囊网络模型,在仿射变换图像重构方面也...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 50; no. 9; pp. 1804 - 1817
Main Authors 宋燕, 王勇
Format Journal Article
LanguageChinese
Published 上海理工大学控制科学与工程系 上海 200093 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:针对传统的胶囊网络(Capsule network,CapsNet)特征提取不充分的问题,提出一种图像分类的多阶段注意力胶囊网络模型.首先,在卷积层对低层特征和高层特征分别采用注意力(Spatial attention,SA)和通道注意力(Channel attention,CA)来提取有效特征;然后,提出基于向量的注意力(Vector attention,VA)机制作用于动态路由层,增加对重要胶囊的关注,进而提高低层胶囊对高层胶囊预测的准确性;最后,在五个公共数据集上进行图像分类的对比实验.结果表明,所提出的CapsNet模型在分类精度和鲁棒性上优于其他胶囊网络模型,在仿射变换图像重构方面也表现良好.
ISSN:0254-4156
DOI:10.16383/j.aas.c210012