融合属性偏好和多阶交互信息的可解释评分预测研究

已有推荐系统主要基于用户-项目交互矩阵来学习用户和项目的向量表示,而当交互矩阵稀疏时,推荐系统的精度较低,推荐的结果缺乏可解释性.考虑到用户-项目交互行为中的评分标签信息,提出了一种融合属性偏好和多阶交互信息的可解释评分预测方法,并根据属性偏好对推荐结果进行解释.首先,基于注意力机制分析了用户和项目属性信息与评分标签的关系,建模了节点的属性偏好特征表示;然后,聚合了用户-项目交互矩阵中节点自身、交互邻居和评分标签信息,通过图神经网络学习了节点的多阶交互行为特征表示;最后,融合了节点的属性偏好特征和交互行为特征,在异质类型信息空间下学习了用户和项目的语义特征表示,利用多层感知机实现了评分预测,并...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 50; no. 11; pp. 2231 - 2244
Main Authors 郑建兴, 李沁文, 王素格, 李德玉
Format Journal Article
LanguageChinese
Published 山西大学智能信息处理研究所 太原 030006%山西大学计算机与信息技术学院 太原 030006 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:已有推荐系统主要基于用户-项目交互矩阵来学习用户和项目的向量表示,而当交互矩阵稀疏时,推荐系统的精度较低,推荐的结果缺乏可解释性.考虑到用户-项目交互行为中的评分标签信息,提出了一种融合属性偏好和多阶交互信息的可解释评分预测方法,并根据属性偏好对推荐结果进行解释.首先,基于注意力机制分析了用户和项目属性信息与评分标签的关系,建模了节点的属性偏好特征表示;然后,聚合了用户-项目交互矩阵中节点自身、交互邻居和评分标签信息,通过图神经网络学习了节点的多阶交互行为特征表示;最后,融合了节点的属性偏好特征和交互行为特征,在异质类型信息空间下学习了用户和项目的语义特征表示,利用多层感知机实现了评分预测,并在MovieLens和Douban数据集上验证了方法的有效性.实验结果表明,所提方法在平均绝对误差(Mean absolute error,MAE)和均方根误差(Root mean square error,RMSE)指标上有效提高了推荐系统的精度,缓解了数据稀疏场景下推荐模型性能较低的问题,提升了推荐结果的可解释性.
ISSN:0254-4156
DOI:10.16383/j.aas.c210457