基于深度学习和图像识别的电力配件智能出入库

针对电力配件种类繁多、型号各异,依靠射频识别(radio frequency identification,RFID)技术开展电力配件出入库管理,不能覆盖所有电力配件,容易出现出入库、退库不准确、效率低,以及出入库电力配件质量不满足生产要求的问题,开展基于机器学习和图像识别的电力配件智能识别研究.首先采用灰度处理、二值化等方法对原始图像进行处理,之后通过最小外接矩形校正原始图像,然后以卷积神经网络(convolutional neural networks,CNN)、卷积递归神经网络(convolutional recurrent neural network,CRNN)等深度神经网络为核心,...

Full description

Saved in:
Bibliographic Details
Published in中国电力 Vol. 54; no. 3; pp. 55 - 60
Main Authors 赵永良, 付鑫, 郭阳, 边迎迎, 王思宁
Format Magazine Article
LanguageChinese
Published 国家电网有限公司,北京 100031%北京中电普华信息技术有限公司,北京 100192 01.03.2021
Subjects
Online AccessGet full text
ISSN1004-9649
DOI10.11930/j.issn.1004-9649.202006148

Cover

More Information
Summary:针对电力配件种类繁多、型号各异,依靠射频识别(radio frequency identification,RFID)技术开展电力配件出入库管理,不能覆盖所有电力配件,容易出现出入库、退库不准确、效率低,以及出入库电力配件质量不满足生产要求的问题,开展基于机器学习和图像识别的电力配件智能识别研究.首先采用灰度处理、二值化等方法对原始图像进行处理,之后通过最小外接矩形校正原始图像,然后以卷积神经网络(convolutional neural networks,CNN)、卷积递归神经网络(convolutional recurrent neural network,CRNN)等深度神经网络为核心,结合CTC损失函数,构建适用于识别电力配件的深度学习模型,并依据图像识别吻合度,同步推荐疑似配件设备.通过智能设备采集电力配件图像,采用上述方法实时识别配件名称、型号,提示外形尺寸、适用范围、产品用途.实验结果表明,基于机器学习和图像识别的电力配件智能识别结果准确率达到95%,显著提升了仓储出入库管理的智能化水平.
ISSN:1004-9649
DOI:10.11930/j.issn.1004-9649.202006148