基于深度强化学习的多能流楼宇低碳调度方法
建筑减排已成为中国达到"双碳"目标的重要途径,智慧楼宇作为多能流网络耦合的综合能源主体,面临碳排放量较多、多能流网络耦合程度高、负荷用能行为动态特性明显等问题.针对这一问题,提出基于深度强化学习的多能流楼宇低碳调度方法.首先,根据智慧楼宇的实际碳排放量,建立了一种奖惩阶梯型碳排放权交易机制.其次,面向碳市场和多能流耦合网络,以最小化运行成本为目标函数,建立多能流低碳楼宇调度模型,并将该调度问题转换为马尔可夫决策过程.然后,利用Rainbow算法进行优化调度问题的求解.最后,通过仿真分析验证了优化调度模型的可行性及有效性....
Saved in:
Published in | 浙江电力 Vol. 43; no. 2; pp. 126 - 136 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
国网上海市电力公司浦东供电公司,上海 200122
25.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1007-1881 |
DOI | 10.19585/j.zjdl.202402014 |
Cover
Summary: | 建筑减排已成为中国达到"双碳"目标的重要途径,智慧楼宇作为多能流网络耦合的综合能源主体,面临碳排放量较多、多能流网络耦合程度高、负荷用能行为动态特性明显等问题.针对这一问题,提出基于深度强化学习的多能流楼宇低碳调度方法.首先,根据智慧楼宇的实际碳排放量,建立了一种奖惩阶梯型碳排放权交易机制.其次,面向碳市场和多能流耦合网络,以最小化运行成本为目标函数,建立多能流低碳楼宇调度模型,并将该调度问题转换为马尔可夫决策过程.然后,利用Rainbow算法进行优化调度问题的求解.最后,通过仿真分析验证了优化调度模型的可行性及有效性. |
---|---|
ISSN: | 1007-1881 |
DOI: | 10.19585/j.zjdl.202402014 |