基于自学习稀疏先验的三维SAR成像方法
TN957.52; 合成孔径雷达三维成像技术(3D SAR)能通过孔径维度扩展实现三维成像能力,但数据维度大、系统实现难、成像分辨率低.压缩感知稀疏重构技术在简化3D SAR系统、提升成像质量等方面展现出巨大潜力,但面临计算复杂度高、参数设置困难、弱稀疏场景适应差等新问题,制约了其实际应用.针对上述问题,该文结合卷积神经网络的特征学习及迭代算法的深度展开理论,提出了基于自学习稀疏先验的3D SAR成像方法.首先,探讨了常规3D SAR稀疏成像中矩阵向量线性表征模型的局限性,引入成像算子提升成像算法处理效率.其次,讨论了迭代算法映射网络的深度展开模型和实现方式,包括网络拓扑结构设计、算法参数的优...
Saved in:
Published in | 雷达学报 Vol. 12; no. 1; pp. 36 - 52 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
电子科技大学信息与通信工程学院 成都 611731
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2095-283X |
DOI | 10.12000/JR22101 |
Cover
Summary: | TN957.52; 合成孔径雷达三维成像技术(3D SAR)能通过孔径维度扩展实现三维成像能力,但数据维度大、系统实现难、成像分辨率低.压缩感知稀疏重构技术在简化3D SAR系统、提升成像质量等方面展现出巨大潜力,但面临计算复杂度高、参数设置困难、弱稀疏场景适应差等新问题,制约了其实际应用.针对上述问题,该文结合卷积神经网络的特征学习及迭代算法的深度展开理论,提出了基于自学习稀疏先验的3D SAR成像方法.首先,探讨了常规3D SAR稀疏成像中矩阵向量线性表征模型的局限性,引入成像算子提升成像算法处理效率.其次,讨论了迭代算法映射网络的深度展开模型和实现方式,包括网络拓扑结构设计、算法参数的优化约束及网络的训练方法.最后,通过仿真数据和地面实验,证明了所提方法在提升成像精度的同时,其运行时间较传统稀疏成像算法降低一个数量级. |
---|---|
ISSN: | 2095-283X |
DOI: | 10.12000/JR22101 |