基于数据驱动的青藏铁路冻土区行车可靠性分析模型

U213.14%O213.2; 为保障青藏铁路二期工程格尔木至拉萨段高原冻土区的行车安全,基于冻土区铁路路基原始时序高程值数据,建立不同路基类型下的乘积季节模型拟合路基不均匀沉降退化轨迹,同时置信化有效预测路基高程沉降值.通过起始高程值差分运算,进行路基沉降值退化量统计分析,根据行车安全预设沉降阈值,借助失效时间外推方法完成可靠性评估.仿真模拟表明,模型能够有效地预测冻土区融沉退化情况且精度较高,同时研究成果可以为后勤保障部门的日常路基养护工作提供参考依据....

Full description

Saved in:
Bibliographic Details
Published in机械强度 Vol. 46; no. 4; pp. 905 - 913
Main Authors 王劲博, 唐家银, 刘新玲, 吴怡
Format Journal Article
LanguageChinese
Published 西南交通大学 数学学院,成都 611756%西南交通大学 数学学院,成都 611756 2024
西南交通大学 综合交通大数据应用技术国家工程实验室,成都 611756
Subjects
Online AccessGet full text
ISSN1001-9669
DOI10.16579/j.issn.1001.9669.2024.04.020

Cover

Abstract U213.14%O213.2; 为保障青藏铁路二期工程格尔木至拉萨段高原冻土区的行车安全,基于冻土区铁路路基原始时序高程值数据,建立不同路基类型下的乘积季节模型拟合路基不均匀沉降退化轨迹,同时置信化有效预测路基高程沉降值.通过起始高程值差分运算,进行路基沉降值退化量统计分析,根据行车安全预设沉降阈值,借助失效时间外推方法完成可靠性评估.仿真模拟表明,模型能够有效地预测冻土区融沉退化情况且精度较高,同时研究成果可以为后勤保障部门的日常路基养护工作提供参考依据.
AbstractList U213.14%O213.2; 为保障青藏铁路二期工程格尔木至拉萨段高原冻土区的行车安全,基于冻土区铁路路基原始时序高程值数据,建立不同路基类型下的乘积季节模型拟合路基不均匀沉降退化轨迹,同时置信化有效预测路基高程沉降值.通过起始高程值差分运算,进行路基沉降值退化量统计分析,根据行车安全预设沉降阈值,借助失效时间外推方法完成可靠性评估.仿真模拟表明,模型能够有效地预测冻土区融沉退化情况且精度较高,同时研究成果可以为后勤保障部门的日常路基养护工作提供参考依据.
Abstract_FL To ensure the safety of train operation in the plateau permafrost region of the Golmud-Lhasa section of the Qinghai Tibet Railway Phase Ⅱ project,based on the original time series elevation data of railway subgrade in permafrost region,the product season model under various subgrade types is established to fit the uneven settlement degradation trajectory of subgrade and effectively predicted elevation values with confidence intervals.The differential operation was used to analyze the subgrade settlement degradation values.The failure time extrapolation method was used to complete the reliability evaluation,and the settlement threshold was set based on driving safety.The simulation results show that it can accurately forecast permafrost thawing degradation,and the research findings can be used by the logistics support department to conduct daily subgrade maintenance.
Author 刘新玲
唐家银
吴怡
王劲博
AuthorAffiliation 西南交通大学 数学学院,成都 611756%西南交通大学 数学学院,成都 611756;西南交通大学 综合交通大数据应用技术国家工程实验室,成都 611756
AuthorAffiliation_xml – name: 西南交通大学 数学学院,成都 611756%西南交通大学 数学学院,成都 611756;西南交通大学 综合交通大数据应用技术国家工程实验室,成都 611756
Author_FL LIU XinLing
WU Yi
WANG JinBo
TANG JiaYin
Author_FL_xml – sequence: 1
  fullname: WANG JinBo
– sequence: 2
  fullname: TANG JiaYin
– sequence: 3
  fullname: LIU XinLing
– sequence: 4
  fullname: WU Yi
Author_xml – sequence: 1
  fullname: 王劲博
– sequence: 2
  fullname: 唐家银
– sequence: 3
  fullname: 刘新玲
– sequence: 4
  fullname: 吴怡
BookMark eNotj81KAzEUhbOoYK19jC4nJjOTGbOUUn-g4Kb7kkwa6SApGkSXClJEqy2KCGJbu9G6sboSRnwbM868hSl6uXA53-Kec5ZAQXVUC4AKRhAHJKQrMWxrrSBGCEMaBBS6yPUhsuuiAijOuTPni6CsdZtbiV1KUFAENTNOvpOr9PYtvXzNX97N-fTn_jQfXmd3_fzmJPuYme6neRibXpJNetnXk-nP8uFjevxszrrpaJBOJ2Z0sQwWJNvVrfL_LYHGeq1R3XTq2xtb1bW6o20E5PCQBEJyRgUPPY4FYr7nEykxIZQzQrFFOJJ-5HLGo0gIIglbtYNDiiPulUDl7-0hU5KpnWbcOdhX1rAZH-2JeWfk28beL9UtaY0
ClassificationCodes U213.14%O213.2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16579/j.issn.1001.9669.2024.04.020
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL DATA-DRIVEN RELIABILITY ANALYSIS MODEL OF QINGHAI-TIBET RAILWAY IN PERMAFROST ZONE
EndPage 913
ExternalDocumentID jxqd202404020
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1000-b756dfba9db73b1d0a4345ff1559ba5911d01cf4c2babccdd5f5a88881791cb3
ISSN 1001-9669
IngestDate Thu May 29 04:06:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 乘积季节模型
SARIMA model
可靠性评估
Degradation data
Permafrost thawing
Reliability assessment
冻土融沉
退化数据
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1000-b756dfba9db73b1d0a4345ff1559ba5911d01cf4c2babccdd5f5a88881791cb3
PageCount 9
ParticipantIDs wanfang_journals_jxqd202404020
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 机械强度
PublicationTitle_FL Journal of Mechanical Strength
PublicationYear 2024
Publisher 西南交通大学 数学学院,成都 611756%西南交通大学 数学学院,成都 611756
西南交通大学 综合交通大数据应用技术国家工程实验室,成都 611756
Publisher_xml – name: 西南交通大学 数学学院,成都 611756%西南交通大学 数学学院,成都 611756
– name: 西南交通大学 综合交通大数据应用技术国家工程实验室,成都 611756
SSID ssib001129506
ssj0039916
ssib053800445
ssib023167364
ssib051373004
ssib002264255
Score 2.3761818
Snippet U213.14%O213.2;...
SourceID wanfang
SourceType Aggregation Database
StartPage 905
Title 基于数据驱动的青藏铁路冻土区行车可靠性分析模型
URI https://d.wanfangdata.com.cn/periodical/jxqd202404020
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxR3LahRBsEkiiB7EJz5DDvYpbJxX93QfezazBA-eIuQW5rGjeFjRbEByUpAgGo0oIohJzEXjxehJiPg3zrr7C56sqp3sdlB8XdxD01NdU09mqrq3uoex84UO09wNs1oaZnkNIoRbS2HSU0uCPGzmuoAIRlW-l-TM5eDinJgbGf1mVS0tttOpbOmn-0r-xasAA7_iLtm_8OyAKACgD_6FFjwM7R_5mMeC6waPDI8DbFXMY8m14JGDHTXNDUA0N5pHLiIrw43iccg1IAc4pKe59nisuA65ahDEh-wSIVHITYPukjyKiFcd2SGkTkwVNy72ERl4SRpq0F1E2fTFcLgJaUghKZQw5pqGDFFAyjFXkZ0oE1qfC6B5pBHo1YcIbM1gTREVUkigUjHyqAOamSEK8AiIq0CjRLJSNZI2CkioFbGWxJHoRt4eKg6Pgl21XHvRxBsul5JpQMrGriBh5SFDRsfqElIDLvumMWi-Sct7FcjqgLgaLeHVibsiZYAW6DA9KfEsVMk98Z84W7ENq-dgdqvt4BdI6yEPrEimHWElRbq_YfiHeCtFqCngIgc6z2sKOUyhzekIYc8ZJhqD8s9rt27kiOHg4sUo2-eFoSus5RBK5SERFXYFAGTu3nAPtYcnOPjDqb5wffzywvDaV1irMJgK-zgPosqHygj7Gd9V4MKvxKfNfK0iaV2x8s7Zw-xQNWGcMP2n_wgbWbp6lB20jhE9xuJyY-fLzqPOs_edh-96bz-U97e-vrjbW3vSfb7ae3qn-3G7XP5UvtwoV3a6myvdz6_L1e3e2qvO7TflveXO-uPO1ma5_uA4m23Es_WZWvV5lNoC_ikHb1ch8yJNdJ6GfurmThL4gSgKLDRIEwFZTO64WRFkXpqkWZbnohCJgh-eSJyl_gk21rreap5kE3mWobF9twnJul80FZCTRaIzR2ZB7nqn2Hhlg_nq7bcwv8eHp3-HcIYdwH5_7fIsG2vfXGyeg2y-nY6T278DQ4y1CA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%95%B0%E6%8D%AE%E9%A9%B1%E5%8A%A8%E7%9A%84%E9%9D%92%E8%97%8F%E9%93%81%E8%B7%AF%E5%86%BB%E5%9C%9F%E5%8C%BA%E8%A1%8C%E8%BD%A6%E5%8F%AF%E9%9D%A0%E6%80%A7%E5%88%86%E6%9E%90%E6%A8%A1%E5%9E%8B&rft.jtitle=%E6%9C%BA%E6%A2%B0%E5%BC%BA%E5%BA%A6&rft.au=%E7%8E%8B%E5%8A%B2%E5%8D%9A&rft.au=%E5%94%90%E5%AE%B6%E9%93%B6&rft.au=%E5%88%98%E6%96%B0%E7%8E%B2&rft.au=%E5%90%B4%E6%80%A1&rft.date=2024&rft.pub=%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6+%E6%95%B0%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%88%90%E9%83%BD+611756%25%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6+%E6%95%B0%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%88%90%E9%83%BD+611756&rft.issn=1001-9669&rft.volume=46&rft.issue=4&rft.spage=905&rft.epage=913&rft_id=info:doi/10.16579%2Fj.issn.1001.9669.2024.04.020&rft.externalDocID=jxqd202404020
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjxqd%2Fjxqd.jpg