Naturalistic Stimuli: A Paradigm for Multi-Scale Functional Characterization of the Human Brain

Movies, audio stories, and virtual reality are increasingly used as stimuli for functional brain imaging. Such naturalistic paradigms are in sharp contrast to the tradition of experimental reductionism in neuroscience research. Being complex, dynamic, and diverse, naturalistic stimuli set up a more...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in biomedical engineering Vol. 19
Main Authors Zhang, Yizhen, Kim, Jung-Hoon, Brang, David, Liu, Zhongming
Format Journal Article
LanguageEnglish
Published 01.09.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:Movies, audio stories, and virtual reality are increasingly used as stimuli for functional brain imaging. Such naturalistic paradigms are in sharp contrast to the tradition of experimental reductionism in neuroscience research. Being complex, dynamic, and diverse, naturalistic stimuli set up a more ecologically relevant condition and induce highly reproducible brain responses across a wide range of spatiotemporal scales. Here, we review recent technical advances and scientific findings on imaging the brain under naturalistic stimuli. Then we elaborate on the premise of using naturalistic paradigms for multi-scale, multi-modal, and high-throughput functional characterization of the human brain. We further highlight the growing potential of using deep learning models to infer neural information processing from brain responses to naturalistic stimuli. Lastly, we advocate large-scale collaborations to combine brain imaging and recording data across experiments, subjects, and labs that use the same set of naturalistic stimuli.Movies, audio stories, and virtual reality are increasingly used as stimuli for functional brain imaging. Such naturalistic paradigms are in sharp contrast to the tradition of experimental reductionism in neuroscience research. Being complex, dynamic, and diverse, naturalistic stimuli set up a more ecologically relevant condition and induce highly reproducible brain responses across a wide range of spatiotemporal scales. Here, we review recent technical advances and scientific findings on imaging the brain under naturalistic stimuli. Then we elaborate on the premise of using naturalistic paradigms for multi-scale, multi-modal, and high-throughput functional characterization of the human brain. We further highlight the growing potential of using deep learning models to infer neural information processing from brain responses to naturalistic stimuli. Lastly, we advocate large-scale collaborations to combine brain imaging and recording data across experiments, subjects, and labs that use the same set of naturalistic stimuli.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2468-4511
2468-4511
DOI:10.1016/j.cobme.2021.100298