Comparative Analysis of Negative Capacitance Double Gate Junctionless Transistor and Tri-Gate FinFET for Analog Performance

In this paper, the comparative analysis of two device structures has been proposed for analog and RF performance i.e. double gate junctionless transistor DGJLT and TG-FinFET with the presence of the negative capacitance phenomena as all the results are getting at the constant thickness of 1 nm of Hf...

Full description

Saved in:
Bibliographic Details
Published inAdvances in VLSI, Communication, and Signal Processing Vol. 911; pp. 579 - 590
Main Authors Bairwa, Deepak, Rai, Manish Kumar, Rai, Sanjeev
Format Book Chapter
LanguageEnglish
Published Singapore Springer 2022
Springer Nature Singapore
SeriesLecture Notes in Electrical Engineering
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the comparative analysis of two device structures has been proposed for analog and RF performance i.e. double gate junctionless transistor DGJLT and TG-FinFET with the presence of the negative capacitance phenomena as all the results are getting at the constant thickness of 1 nm of HfO2 material, Silvaco atlas tool has been used. In this paper, the simulated parameters are the gate to source capacitance Cgs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{C}}_{{{\text{gs}}}$$\end{document}, the gate to drain capacitance Cgd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{C}}_{{{\text{gd}}}$$\end{document}, trans-conductance gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{g}}_{{\text{m}}}$$\end{document}, output conductance gds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{g}}_{{{\text{ds}}}$$\end{document}, Early voltage VEA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{V}}_{{{\text{EA}}}$$\end{document}, cut off frequency fT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{f}}_{{\text{T}}}$$\end{document}, intrinsic gain AV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{A}}_{{\text{V}}}$$\end{document}, trans-conductance generation factor TGF, trans-conductance frequency product TFP, gain frequency product GFP. Simulated analog and RF performance parameters are showing better results for both structures when having negative capacitance material.
ISBN:9811926301
9789811926303
ISSN:1876-1100
1876-1119
DOI:10.1007/978-981-19-2631-0_50