Solvers for Separable and Equality QP/QCQP Problems
We shall now use the results of our previous investigations to develop efficient algorithms for the minimization of strictly convex quadratic functions subject to possibly nonlinear convex separable inequality constraints and linear equality constraints $$\min \limits _{\mathbf {x}\in \varOmega _{SE...
Saved in:
Published in | Scalable Algorithms for Contact Problems Vol. 36; pp. 135 - 160 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
United States
Springer New York
2017
|
Series | Advances in Mechanics and Mathematics |
Subjects | |
Online Access | Get full text |
ISBN | 9781493968329 1493968327 |
ISSN | 1571-8689 1876-9896 |
DOI | 10.1007/978-1-4939-6834-3_9 |
Cover
Loading…
Summary: | We shall now use the results of our previous investigations to develop efficient algorithms for the minimization of strictly convex quadratic functions subject to possibly nonlinear convex separable inequality constraints and linear equality constraints $$\min \limits _{\mathbf {x}\in \varOmega _{SE}} f(\mathbf {x}), \,\, f(\mathbf {x})=\frac{1}{2} \mathbf {x}^T\mathsf A\mathbf x-\mathbf x^T\mathbf b,$$ where $$\varOmega _{SE}=\{\mathbf {x}\in \mathbb {R}^n: \mathsf {B}\mathbf {x}=\mathbf {o} \ \ \mathrm {and} \ \ \mathbf {x}\in \varOmega _S\}, \,\, \varOmega _S=\{\mathbf {x}\in \mathbb {R}^n: h_i(\mathbf {x}_i)\le 0, \ i=1, \dots ,s\},$$ $$\mathbf b\in \mathbb {R}^n$$ , $$h_i$$ are convex functions, $$\mathsf A$$ is an $$n\times n$$ SPD matrix, and $$\mathsf {B}\in \mathbb {R}^{m\times n}$$ . |
---|---|
Bibliography: | Original Abstract: We shall now use the results of our previous investigations to develop efficient algorithms for the minimization of strictly convex quadratic functions subject to possibly nonlinear convex separable inequality constraints and linear equality constraints\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \limits _{\mathbf {x}\in \varOmega _{SE}} f(\mathbf {x}), \,\, f(\mathbf {x})=\frac{1}{2} \mathbf {x}^T\mathsf A\mathbf x-\mathbf x^T\mathbf b,$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega _{SE}=\{\mathbf {x}\in \mathbb {R}^n: \mathsf {B}\mathbf {x}=\mathbf {o} \ \ \mathrm {and} \ \ \mathbf {x}\in \varOmega _S\}, \,\, \varOmega _S=\{\mathbf {x}\in \mathbb {R}^n: h_i(\mathbf {x}_i)\le 0, \ i=1, \dots ,s\},$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf b\in \mathbb {R}^n$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_i$$\end{document} are convex functions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf A$$\end{document} is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} SPD matrix, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {B}\in \mathbb {R}^{m\times n}$$\end{document}. |
ISBN: | 9781493968329 1493968327 |
ISSN: | 1571-8689 1876-9896 |
DOI: | 10.1007/978-1-4939-6834-3_9 |