Solvers for Separable and Equality QP/QCQP Problems

We shall now use the results of our previous investigations to develop efficient algorithms for the minimization of strictly convex quadratic functions subject to possibly nonlinear convex separable inequality constraints and linear equality constraints $$\min \limits _{\mathbf {x}\in \varOmega _{SE...

Full description

Saved in:
Bibliographic Details
Published inScalable Algorithms for Contact Problems Vol. 36; pp. 135 - 160
Main Authors Sadowská, Marie, Dostál, Zdeněk, Vondrák, Vít, Kozubek, Tomás
Format Book Chapter
LanguageEnglish
Published United States Springer New York 2017
SeriesAdvances in Mechanics and Mathematics
Subjects
Online AccessGet full text
ISBN9781493968329
1493968327
ISSN1571-8689
1876-9896
DOI10.1007/978-1-4939-6834-3_9

Cover

Loading…
More Information
Summary:We shall now use the results of our previous investigations to develop efficient algorithms for the minimization of strictly convex quadratic functions subject to possibly nonlinear convex separable inequality constraints and linear equality constraints $$\min \limits _{\mathbf {x}\in \varOmega _{SE}} f(\mathbf {x}), \,\, f(\mathbf {x})=\frac{1}{2} \mathbf {x}^T\mathsf A\mathbf x-\mathbf x^T\mathbf b,$$ where $$\varOmega _{SE}=\{\mathbf {x}\in \mathbb {R}^n: \mathsf {B}\mathbf {x}=\mathbf {o} \ \ \mathrm {and} \ \ \mathbf {x}\in \varOmega _S\}, \,\, \varOmega _S=\{\mathbf {x}\in \mathbb {R}^n: h_i(\mathbf {x}_i)\le 0, \ i=1, \dots ,s\},$$   $$\mathbf b\in \mathbb {R}^n$$ ,  $$h_i$$ are convex functions, $$\mathsf A$$ is an $$n\times n$$ SPD matrix, and $$\mathsf {B}\in \mathbb {R}^{m\times n}$$ .
Bibliography:Original Abstract: We shall now use the results of our previous investigations to develop efficient algorithms for the minimization of strictly convex quadratic functions subject to possibly nonlinear convex separable inequality constraints and linear equality constraints\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \limits _{\mathbf {x}\in \varOmega _{SE}} f(\mathbf {x}), \,\, f(\mathbf {x})=\frac{1}{2} \mathbf {x}^T\mathsf A\mathbf x-\mathbf x^T\mathbf b,$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega _{SE}=\{\mathbf {x}\in \mathbb {R}^n: \mathsf {B}\mathbf {x}=\mathbf {o} \ \ \mathrm {and} \ \ \mathbf {x}\in \varOmega _S\}, \,\, \varOmega _S=\{\mathbf {x}\in \mathbb {R}^n: h_i(\mathbf {x}_i)\le 0, \ i=1, \dots ,s\},$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf b\in \mathbb {R}^n$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_i$$\end{document} are convex functions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf A$$\end{document} is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} SPD matrix, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {B}\in \mathbb {R}^{m\times n}$$\end{document}.
ISBN:9781493968329
1493968327
ISSN:1571-8689
1876-9896
DOI:10.1007/978-1-4939-6834-3_9