Self‐Assembly of ZnII/CdII/PbII Coordination Polymers with a Tripodal Ligand Derived from Aromatase Inhibitor Letrozole Derivative

Reactions of the aromatase inhibitor letrozole derivative 4,4'‐(1H‐1,2,4‐triazol‐1‐yl)methylene‐bis(benzonic acid) (H2tzmb) with ZnII, CdII, or PbII salts under similar conditions resulted in the generation of three coordination polymers, namely, {[Zn(tzmb)(H2tzmb)]·H2O}n (1), [Cd(tzmb)(H2O)2]n...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für anorganische und allgemeine Chemie (1950) Vol. 646; no. 21; pp. 1739 - 1747
Main Authors Si, Jin‐Ping, Wang, Wen‐Jing, Chang, Jun, Huang, Kun‐Lin, Zhang, Zhi‐Hui, Chen, Sheng‐Chun, He, Ming‐Yang, Chen, Qun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 15.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Reactions of the aromatase inhibitor letrozole derivative 4,4'‐(1H‐1,2,4‐triazol‐1‐yl)methylene‐bis(benzonic acid) (H2tzmb) with ZnII, CdII, or PbII salts under similar conditions resulted in the generation of three coordination polymers, namely, {[Zn(tzmb)(H2tzmb)]·H2O}n (1), [Cd(tzmb)(H2O)2]n (2), and {[Pb(tzmb)(H2O)]·DMF}n (3), respectively. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analysis, IR spectroscopy, powder X‐ray diffraction, and thermogravimetric analyses. Complex 1 features a twofold 2D → 2D interpenetrated network based on corrugated 63‐hcb layers, and complex 2 exhibits a flat 2D 4.82‐fes network, whereas complex 3 presents a 3D hex net based on infinite rod‐shaped secondary building units. The remarkable structural diversity may illustrate the powerful effect of metal ions on coordination assemblies. The spectroscopic, thermal, and photoluminescent properties of complexes 1–3 were investigated. In addition, the catalytic activity of 1 in the solvent‐free ring‐opening polymerization of ε‐caprolactone was also discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0044-2313
1521-3749
DOI:10.1002/zaac.201900361