SARS-CoV2 envelop proteins reshape the serological responses of COVID-19 patients
Abstract The SARS-CoV-2 pandemic has elicited a unique international mobilization of the scientific community to better understand this coronavirus and its associated disease and to develop efficient tools to combat infection. Similar to other coronavirae, SARS-CoV-2 hijacks the host cell complex se...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
16.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract The SARS-CoV-2 pandemic has elicited a unique international mobilization of the scientific community to better understand this coronavirus and its associated disease and to develop efficient tools to combat infection. Similar to other coronavirae, SARS-CoV-2 hijacks the host cell complex secretory machinery to produce properly folded viral proteins that will compose the nascent virions; including Spike, Envelope and Membrane proteins, the most exposed membrane viral proteins to the host immune system. Antibody response is part of the anti-viral immune arsenal that infected patients develop to fight viral particles in the body. Herein, we investigate the immunogenic potential of Spike (S), Envelope (E) and Membrane (M) proteins using a human cell-based system to mimic membrane insertion and N-glycosylation. We show that both S and M proteins elicit the production of specific IgG, IgM and IgA in SARS-CoV-2 infected patients. Elevated Ig responses were observed in COVID+ patients with moderate and severe forms of the disease. Finally, when SARS-CoV-2 Spike D614 and G614 variants were compared, reduced Ig binding was observed with the Spike G614 variant. Altogether, this study underlines the needs for including topological features in envelop proteins to better characterize the serological status of COVID+ patients, points towards an unexpected immune response against the M protein and shows that our assay could represent a powerful tool to test humoral responses against actively evolving SARS-CoV-2 variants and vaccine effectiveness. Competing Interest Statement EC and LAE are founders of Cell Stress Discoveries Ltd (https://cellstressdiscoveries.com/). |
---|---|
DOI: | 10.1101/2021.02.15.431237 |