Biomolecular recognition of the glycan neoantigen CA19-9 by distinct antibodies
ABSTRACT Glycans decorate cell surface, secreted glycoproteins and glycolipids. Altered glycans are often found in cancers. Despite their high diagnostic and therapeutic potentials, glycans are polar and flexible molecules that are quite challenging for the development and design of high-affinity bi...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
17.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | ABSTRACT Glycans decorate cell surface, secreted glycoproteins and glycolipids. Altered glycans are often found in cancers. Despite their high diagnostic and therapeutic potentials, glycans are polar and flexible molecules that are quite challenging for the development and design of high-affinity binding antibodies. To understand the mechanisms by which glycan neoantigens are specifically recognized by antibodies, we analyze the biomolecular recognition of a single tumor-associated carbohydrate antigen CA19-9 by two distinct antibodies using X-ray crystallography. Despite the plasticity of glycans and the very different antigen-binding surfaces presented by the antibodies, both structures reveal an essentially identical extended CA19-9 conformer, suggesting that this conformer’s stability selects the antibodies. Starting from the bound structure of one of the antibodies, we use the AbLIFT computational method to design a variant with seven core mutations that exhibited tenfold improved affinity for CA19-9. The results reveal strategies used by antibodies to specifically recognize glycan antigens and show how automated antibody-optimization methods may be used to enhance the clinical potential of existing antibodies. Competing Interest Statement The Weizmann Institute of Science, together with Tel-Aviv University, filed a patent application for AbLIFT-15. |
---|---|
DOI: | 10.1101/2021.02.17.431565 |