Freshly Thawed Cryobanked Human Neural Stem Cells Engraft within Endogenous Neurogenic Niches and Restore Cognitive Function Following Chronic Traumatic Brain Injury

Human neural stem cells (hNSCs) have potential as a cell therapy following traumatic brain injury (TBI). While various studies have demonstrated the efficacy of NSCs from on-going culture, there is a significant gap in our understanding of freshly thawed cells from cryobanked stocks - a more clinica...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Badner, Anna, Reinhardt, Emily K, Nguyen, Theodore V, Midani, Nicole, Marshall, Andrew T, Lepe, Cherie, Echeverria, Karla, Lepe, Javier, Torrecampo, Vincent, Bertan, Sara H, Tran, Serinee H, Anderson, Aileen J, Cummings, Brian J
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 24.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human neural stem cells (hNSCs) have potential as a cell therapy following traumatic brain injury (TBI). While various studies have demonstrated the efficacy of NSCs from on-going culture, there is a significant gap in our understanding of freshly thawed cells from cryobanked stocks - a more clinically-relevant source. To address these shortfalls, the therapeutic potential of our previously validated Shef-6.0 human embryonic stem cell (hESC)-derived hNSC line was tested following long-term cryostorage and thawing prior to transplant. Immunodeficient athymic nude rats received a moderate unilateral controlled cortical impact (CCI) injury. At 4-weeks post-injury, 6x105 freshly thawed hNSCs were transplanted into six injection sites (2 ipsi- and 4 contra-lateral) with 53.4% of cells surviving three months post-transplant. Interestingly, most hNSCs were engrafted in the meninges and the lining of lateral ventricles, associated with high CXCR4 expression and a chemotactic response to SDF1alpha (CXCL12). While some expressed markers of neuron, astrocyte, and oligodendrocyte lineages, the majority remained progenitors, identified through doublecortin expression (78.1%). Importantly, transplantation resulted in improved spatial learning and memory in Morris water maze navigation and reduced risk-taking behavior in an elevated plus maze. Investigating potential mechanisms of action, we identified an increase in ipsilateral host hippocampus cornu ammonis (CA) neuron survival, contralateral dentate gyrus (DG) volume and DG neural progenitor morphology as well as a reduction in neuroinflammation. Together, these findings validate the potential of hNSCs to restore function after TBI and demonstrate that long-term bio-banking of cells and thawing aliquots prior to use may be suitable for clinical deployment. Competing Interest Statement The authors have declared no competing interest.
DOI:10.1101/2020.07.23.212423