All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings
Abstract Transient bioelectronics has grown fast, opening possibilities never thought before. In medicine, transient implantable devices are interesting because they could eliminate the risks related to surgical retrieval and reduce the chronic foreign body reaction. However, despite recent progress...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
10.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract Transient bioelectronics has grown fast, opening possibilities never thought before. In medicine, transient implantable devices are interesting because they could eliminate the risks related to surgical retrieval and reduce the chronic foreign body reaction. However, despite recent progress in this area, the short functional lifetime of devices due to short-lived transient metals, which is typically a few days or weeks, still limits the potential of transient medical devices. We report that a switch from transient metals to an entirely polymer-based approach allows for a slower degradation process and a longer lifetime of the transient probe, thus opening new possibilities for transient medical devices. As a proof-of-concept, we fabricated all-polymeric transient neural probes that can monitor brain activity in mice for a few months rather than a few days or weeks. Also, we extensively evaluated the foreign body reaction around the implant during the probe’s degradation. This kind of devices might pave the way for several applications in neuroprosthetics. Competing Interest Statement The authors have declared no competing interest. |
---|---|
DOI: | 10.1101/2021.03.09.434622 |