Customizable high-throughput platform for profiling cofactor recruitment to DNA to characterize cis-regulatory elements and screen non-coding single-nucleotide polymorphisms
Determining how DNA variants affect the binding of regulatory complexes to cis-regulatory elements (CREs) and non-coding single-nucleotide polymorphisms (ncSNPs) is a challenge in genomics. To address this challenge, we have developed CASCADE (Comprehensive ASsessment of Complex Assembly at DNA Elem...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
22.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Determining how DNA variants affect the binding of regulatory complexes to cis-regulatory elements (CREs) and non-coding single-nucleotide polymorphisms (ncSNPs) is a challenge in genomics. To address this challenge, we have developed CASCADE (Comprehensive ASsessment of Complex Assembly at DNA Elements), which is a protein-binding microarray (PBM)-based approach that allows for the high-throughput profiling of cofactor (COF) recruitment to DNA sequence variants. The method also enables one to infer the identity of the transcription factor-cofactor (TF-COF) complexes involved in COF recruitment. We use CASCADE to characterize regulatory complexes binding to CREs and SNP quantitative trait loci (SNP-QTLs) in resting and stimulated human macrophages. By profiling the recruitment of the acetyltransferase p300 and MLL methyltransferase component RBBP5, we identify key regulators of the chemokine CXCL10, and by profiling a set of five functionally diverse COFs we identify a prevalence of ETS sites mediating COF recruitment at SNP-QTLs in macrophages. Our results demonstrate that CASCADE is a customizable, high-throughput platform to link DNA variants with the biophysical complexes that mediate functions such as chromatin modification or remodeling in a cell state-specific manner. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148945 |
---|---|
DOI: | 10.1101/2020.04.21.053710 |