Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosafor diagnostic purposes
In Pseudomonas aeruginosa, chemical deconvolution of the pyocyanin voltammetric signal allows its expression to be observed simultaneously with the quorum sensing molecule Pseudomonas quinolone signal (PQS). Such analysis has revealed that PQS might protect pyocyanin from self-oxidation, but also ex...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 51; no. 18; pp. 3789 - 3792 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In Pseudomonas aeruginosa, chemical deconvolution of the pyocyanin voltammetric signal allows its expression to be observed simultaneously with the quorum sensing molecule Pseudomonas quinolone signal (PQS). Such analysis has revealed that PQS might protect pyocyanin from self-oxidation, but also exert a pro-oxidative effect on pyocyanin under oxidative conditions to produce additional redox metabolites. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c4cc08590f |