Role of high microwave power on growth and microstructure of thick nanocrystalline diamond films: A comparison with large grain polycrystalline diamond films

In this work, we study the growth habit of nanocrystalline diamond (NCD) films by exploring the very high power regime, up to 4 kW, in a 5 kW microwave plasma chemical vapour deposition (MPCVD) reactor, through addition of a small amount of nitrogen and oxygen (0.24%) into 4% CH sub(4) in H sub(2) p...

Full description

Saved in:
Bibliographic Details
Published inJournal of crystal growth Vol. 389; pp. 83 - 91
Main Authors Tang, C J, Fernandes, A JS, Girao, A V, Pereira, S, Shi, Fa-Nian, Soares, M R, Costa, F, Neves, A J, Pinto, J L
Format Journal Article
LanguageEnglish
Published 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we study the growth habit of nanocrystalline diamond (NCD) films by exploring the very high power regime, up to 4 kW, in a 5 kW microwave plasma chemical vapour deposition (MPCVD) reactor, through addition of a small amount of nitrogen and oxygen (0.24%) into 4% CH sub(4) in H sub(2) plasma. The coupled effect of high microwave power and substrate temperature on NCD growth behaviour is systematically investigated by varying only power, while fixing the remaining operating parameters. When the power increases from 2 kW to 4 kW, resulting also in rise of the Si substrate temperature higher than 150 [degrees]C, the diamond films obtained maintain the NCD habit, while the growth rate increases significantly. The highest growth rate of 4.6 mu m/h is achieved for the film grown at 4 kW, which represents a growth rate enhancement of about 15 times compared with that obtained when using 2 kW power. Possible factors responsible for such remarkable growth rate enhancement of the NCD films are discussed. The evolution of NCD growth characteristics such as morphology, microstructure and texture is studied by growing thick films and comparing it with that of large grain polycrystalline (PCD) films. One important characteristic of the NCD films obtained, in contrast to PCD films, is that irrespective of deposition time (i.e. film thickness), their grain size and surface roughness remain in the nanometer range throughout the growth. Finally, based on our present and previous experimental results, a potential parameter window is established for fast growth of NCD films under high power conditions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-0248
DOI:10.1016/j.jcrygo.2013.11.091