Transient primary cilia mediate robust Hedgehog pathway-dependent cell cycle control

The regulation of proliferation is one of the primary functions of Hedgehog (Hh) signaling in development. Transduction of Hh signaling requires the primary cilium, a microtubule-based organelle that is necessary for several steps in the pathway. Many cells only build a primary cilium upon cell cycl...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Ho, Emily K, Tsai, Anaïs E, Stearns, Tim
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 21.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The regulation of proliferation is one of the primary functions of Hedgehog (Hh) signaling in development. Transduction of Hh signaling requires the primary cilium, a microtubule-based organelle that is necessary for several steps in the pathway. Many cells only build a primary cilium upon cell cycle arrest in G0. In those proliferating cells that do make a cilium, it is a transient organelle, being assembled in G1 and disassembled sometime after, although exactly when is not well-characterized. Thus the requirement for primary cilia presents a conundrum: how are proliferative signals conveyed through an organelle that is present for only part of the cell cycle? Here we investigate this question in a mouse medulloblastoma cell line, SMB55, that requires cilium-mediated Hh pathway activity for proliferation. We show that SMB55 cells are often ciliated beyond G1 into S phase, and the presence of the cilium determines the periods of Hh pathway activity. Using live imaging over multiple cell cycles, we define two windows of opportunity for Hh pathway activity, either of which is sufficient to effect cell cycle entry. The first is in the ciliated phase of the previous cell cycle, and the second is in G1 of the cell cycle in which the decision is made. We propose that the ability of cells to integrate Hh pathway activity from more than one cell cycle imparts robustness on Hh pathway control of proliferation and may have implications for other Hh-mediated events in development.
DOI:10.1101/741769