Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy

When studying microtubules in vitro, label free imaging of single microtubules is necessary when the quantity of purified tubulin is too low for efficient fluorescent labeling or there is concern that labelling will disrupt its function. Commonly used techniques for observing unlabeled microtubules,...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Mahamdeh, Mohammed, Simmert, Steve, Luchniak, Anna, Schaeffer, Erik, Howard, Jonathon
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 06.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:When studying microtubules in vitro, label free imaging of single microtubules is necessary when the quantity of purified tubulin is too low for efficient fluorescent labeling or there is concern that labelling will disrupt its function. Commonly used techniques for observing unlabeled microtubules, such as video enhanced differential interference contrast, dark-field and more recently laser-based interferometric scattering microscopy, suffer from a number of drawbacks. The contrast of differential interference contrast images depends on the orientation of the microtubules, dark-field is highly sensitive to impurities and optical misalignments, and interferometric scattering has a limited field of view. In addition, all of these techniques require costly optical components such as Nomarski prisms, dark-field condensers, lasers and laser scanners. Here we show that single microtubules can be imaged at high speed and with high contrast using interference reflection microscopy without the aforementioned drawbacks. Interference reflection microscopy is simple to implement, requiring only the incorporation of a 50/50 mirror instead of a dichroic in a fluorescence microscope, and with appropriate microscope settings has similar signal-to-noise ratio to differential interference contrast and fluorescence. We demonstrated the utility of interference reflection microscopy by high speed imaging and tracking of dynamic microtubules at 100 frames per second. In conclusion, the image quality of interference reflection microscopy is similar to or exceeds that of all other techniques and, with minimal microscope modification, can be used to study the dynamics of unlabeled microtubules.
DOI:10.1101/273086