ER-to-Golgi trafficking of procollagen in the absence of large carriers
Secretion and assembly of collagen is fundamental to the function of the extracellular matrix. Defects in the assembly of a collagen matrix lead to pathologies including fibrosis and osteogenesis imperfecta. Owing to the size of fibril-forming procollagen molecules it is assumed that they are transp...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
05.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Secretion and assembly of collagen is fundamental to the function of the extracellular matrix. Defects in the assembly of a collagen matrix lead to pathologies including fibrosis and osteogenesis imperfecta. Owing to the size of fibril-forming procollagen molecules it is assumed that they are transported from the endoplasmic reticulum to the Golgi in specialised large COPII-dependent carriers. Here, analysing endogenous procollagen and a new engineered GFP-tagged form, we show that transport to the Golgi occurs in the absence of large carriers. Large GFP-positive structures are observed occasionally but these are non-dynamic, are not COPII-positive, and label with markers of the ER. We propose a short-loop model of ER-to-Golgi traffic that, while consistent with models of ERGIC-dependent expansion of COPII carriers, does not invoke long-range trafficking of large vesicular structures. Our findings provide an important insight into the process of procollagen trafficking and reveal a short-loop pathway from the ER to the Golgi, without the use of large carriers. |
---|---|
DOI: | 10.1101/339804 |