Differences in signalling, trafficking and glucoregulatory properties of glucagon-like peptide-1 receptor agonists exendin-4 and lixisenatide
Background and purpose: Amino acid substitutions at the N-termini of glucagon-like peptide-1 receptor agonist (GLP-1RA) peptides result in distinct patterns of intracellular signalling, sub-cellular trafficking and efficacy in vivo. Here we aimed to determine whether sequence differences at the liga...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
16.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background and purpose: Amino acid substitutions at the N-termini of glucagon-like peptide-1 receptor agonist (GLP-1RA) peptides result in distinct patterns of intracellular signalling, sub-cellular trafficking and efficacy in vivo. Here we aimed to determine whether sequence differences at the ligand C-termini of clinically approved GLP-1RAs exendin-4 and lixisenatide lead to similar phenomena. We also sought to establish the impact of the C-terminus on signal bias resulting from modifications elsewhere in the molecule. Experimental approach: Exendin-4, lixisenatide, and N-terminally substituted analogues with biased signalling characteristics were compared across a range of in vitro trafficking and signalling assays in different cell types. Fluorescent ligands and new time-resolved FRET approaches were developed to study agonist behaviours at the cellular and sub-cellular level. Anti-hyperglycaemic and anorectic effects of each parent ligand, and their biased derivatives, were assessed in mice. Key results: Lixisenatide and exendin-4 showed equal binding affinity, but lixisenatide was 5-fold less potent for cAMP signalling. Both peptides were rapidly endocytosed, but the GLP-1R recycled more slowly to the plasma membrane after lixisenatide treatment. These combined deficits resulted in reduced maximal sustained insulin secretion and reduced anti-hyperglycaemic and anorectic effects in mice. N-terminal substitutions to both ligands had favourable effects on their pharmacology, resulting in improved insulin release and lowering of blood glucose. Conclusion and implications: Changes to the C-terminus of exendin-4 affect signalling potency and GLP-1R trafficking via mechanisms unrelated to GLP-1R occupancy. These differences were associated with changes in their ability to control blood glucose and therefore may be therapeutically relevant. |
---|---|
DOI: | 10.1101/803833 |