Chromosomal dynamics predicted by an elastic network model explains genome-wide accessibility and long-range couplings

Understanding the three-dimensional (3D) architecture of the chromatin and its relation to gene expression and regulation is fundamental to understanding how the genome functions. Advances in Hi-C technology now permit us to have a glimpse into the 3D genome organization and identify topologically a...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Sauerwald, Natalie, Zhang, She, Kingsford, Carl, Bahar, Ivet
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 15.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding the three-dimensional (3D) architecture of the chromatin and its relation to gene expression and regulation is fundamental to understanding how the genome functions. Advances in Hi-C technology now permit us to have a glimpse into the 3D genome organization and identify topologically associated domains (TADs), but we still lack an understanding of the structural dynamics of chromosomes. The dynamic couplings between regions separated by large genomic distances (> 50 megabases) have yet to be characterized. We adapted a well-established protein-modeling framework, the Gaussian Network Model (GNM), to the task of modeling chromatin dynamics using Hi-C contact data. We show that the GNM can identify structural dynamics at multiple scales: it can quantify the fluctuations in the positions of gene loci, find large genomic compartments and smaller TADs that undergo en-bloc movements, and identify dynamically coupled distal regions along the chromosomes. We show that the predictions of the GNM correlate well with DNase-seq and ATAC-seq measurements on accessibility, the previously identified A and B compartments of chromatin structure, and pairs of interacting loci identified by ChIA-PET. We describe a method to use the GNM to identify novel cross-correlated distal domains (CCDDs) representing regions of long-range dynamic coupling and show that CCDDs are often associated with increased gene coexpression using a large-scale analysis of 212 expression experiments. Together, these results show that GNM provides a mathematically well-founded unified framework for assessing chromatin dynamics and the structural basis of genome-wide observations.
DOI:10.1101/081182