顾及气象数据的中国区域对流层延迟RBF神经网络优化模型

本文基于单层气象数据(ERA5单层数据、实测气象参数)和多层气象数据(ERA5气压层数据、COSMIC掩星数据),分别采取模型法和积分法获取了我国236个陆态网GNSS测站的ZTD值,即ERA5S_ZTD、MET_ZTD、ERA5P_ZTD、RO_ZTD。以GNSS_ZTD为参考,按月评估了上述4种ZTD估计值的精度,结果表明:4种ZTD估计值的月平均RMSE依次为42.8、53.6、16.1和62.3 mm,其中基于积分法估计的ERA5P_ZTD精度最高,采用模型法计算的ERA5S_ZTD和MET_ZTD次之,而利用积分法获取的RO_ZTD值精度较低。为进一步提升利用气象数据估计ZTD值的精...

Full description

Saved in:
Bibliographic Details
Published inCe hui xue bao Vol. 51; no. 8; pp. 1690 - 1707
Main Authors 徐天河, 李耸, 王帅民, 江楠
Format Journal Article
LanguageChinese
English
Published Beijing Surveying and Mapping Press 01.08.2022
山东大学空间科学研究院,山东 威海 264209%河北工程大学矿业与测绘工程学院,河北邯郸 056038
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:本文基于单层气象数据(ERA5单层数据、实测气象参数)和多层气象数据(ERA5气压层数据、COSMIC掩星数据),分别采取模型法和积分法获取了我国236个陆态网GNSS测站的ZTD值,即ERA5S_ZTD、MET_ZTD、ERA5P_ZTD、RO_ZTD。以GNSS_ZTD为参考,按月评估了上述4种ZTD估计值的精度,结果表明:4种ZTD估计值的月平均RMSE依次为42.8、53.6、16.1和62.3 mm,其中基于积分法估计的ERA5P_ZTD精度最高,采用模型法计算的ERA5S_ZTD和MET_ZTD次之,而利用积分法获取的RO_ZTD值精度较低。为进一步提升利用气象数据估计ZTD值的精度,本文提出了基于RBF神经网络的对流层延迟改进模型。计算结果表明:改进模型获得的4种ZTD值与GNSS_ZTD之间的月RMSE平均值分别为23.5、32.1、14.2和40.8 mm,精度较原有ZTD估计值提升43.4%,36.3%,10.0%和34.4%。整体而言,改进模型估计ZTD值精度提升效果明显,且提升率与测站分布的密集程度有关。
ISSN:1001-1595
1001-1595
DOI:10.11947/j.AGCS.2022.20210480