Deep Learning Approaches to Predict Exercise Exertion Levels Using Wearable Physiological Data
Using physiological data from wearable devices, the study aimed to predict exercise exertion levels by building deep learning classification and regression models. Physiological data were obtained using an unobtrusive chest-worn ECG sensor and portable pulse oximeter from healthy individuals who per...
Saved in:
Published in | AMIA Summits on Translational Science proceedings Vol. 2024; p. 419 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
2024
|
Online Access | Get full text |
ISSN | 2153-4063 2153-4063 |
Cover
Loading…
Summary: | Using physiological data from wearable devices, the study aimed to predict exercise exertion levels by building deep learning classification and regression models. Physiological data were obtained using an unobtrusive chest-worn ECG sensor and portable pulse oximeter from healthy individuals who performed 16-minute cycling exercise sessions. During each session, real-time ECG, pulse rate, oxygen saturation, and revolutions per minute (RPM) data were collected at three intensity levels. Subjects' ratings of perceived exertion (RPE) were collected once per minute. Each 16-minute exercise session was divided into eight 2-minute windows. The self-reported RPEs, heart rate, RPMs, and oxygen saturation levels were averaged for each window to form the predictive features. In addition, heart rate variability (HRV) features were extracted from the ECG for each window. Different feature selection algorithms were used to choose top-ranked predictors. The best predictors were then used to train and test deep learning models for regression and classification analysis. Our results showed the highest accuracy and F1 score of 98.2% and 98%, respectively in training the models. For testing the models, the highest accuracy and F1 score were 80%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2153-4063 2153-4063 |