An Explainable Artificial Intelligence-enabled ECG Framework for the Prediction of Subclinical Coronary Atherosclerosis

Coronary artery calcium (CAC) as assessed by computed tomography (CT) is a marker of subclinical coronary atherosclerosis. However, routine application of CAC scoring via CT is limited by high costs and accessibility. An electrocardiogram (ECG) is a widely-used, sensitive, cost-effective, non-invasi...

Full description

Saved in:
Bibliographic Details
Published inAMIA Summits on Translational Science proceedings Vol. 2024; p. 535
Main Authors Han, Changho, Yoon, Dukyong
Format Journal Article
LanguageEnglish
Published United States 2024
Online AccessGet full text
ISSN2153-4063
2153-4063

Cover

Loading…
More Information
Summary:Coronary artery calcium (CAC) as assessed by computed tomography (CT) is a marker of subclinical coronary atherosclerosis. However, routine application of CAC scoring via CT is limited by high costs and accessibility. An electrocardiogram (ECG) is a widely-used, sensitive, cost-effective, non-invasive, and radiation-free diagnostic tool. Considering this, if artificial intelligence (AI)-enabled electrocardiograms (ECGs) could opportunistically detect CAC, it would be particularly beneficial for the asymptomatic or subclinical populations, acting as an initial screening measure, paving the way for further confirmatory tests and preventive strategies, a step ahead of conventional practices. With this aim, we developed an AI-enabled ECG framework that not only predicts a CAC score ≥400 but also offers a visual explanation of the associated potential morphological ECG changes, and tested its efficacy on individuals undergoing health checkups, a group primarily comprising healthy or subclinical individuals. To ensure broader applicability, we performed external validation at a separate institution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2153-4063
2153-4063