Control of alveolar bone development, homeostasis, and socket healing by salt inducible kinases
Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton where SIK inhibition increases bone forma...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
06.09.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs.
SIK2/SIK3 deletion in alveolar bone reduces bone formation and mass by impairing osteoblast maturation, unlike in long bones, where it increases bone formation and mass. |
---|---|
Bibliography: | ObjectType-Working Paper/Pre-Print-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2692-8205 2692-8205 |
DOI: | 10.1101/2024.09.04.611228 |