Peroxisomal APX knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory H2 O2 induced by CAT deficiency in rice
The physiological role of peroxisomal ascorbate peroxidases (pAPX) is unknown; therefore, we utilized pAPX4 knockdown rice and catalase (CAT) inhibition to assess its role in CAT compensation under high photorespiration. pAPX4 knockdown induced co-suppression in the expression of pAPX3. The rice mut...
Saved in:
Published in | Plant, cell and environment Vol. 38; no. 3; pp. 499 - 513 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The physiological role of peroxisomal ascorbate peroxidases (pAPX) is unknown; therefore, we utilized pAPX4 knockdown rice and catalase (CAT) inhibition to assess its role in CAT compensation under high photorespiration. pAPX4 knockdown induced co-suppression in the expression of pAPX3. The rice mutants exhibited metabolic changes such as lower CAT and glycolate oxidase (GO) activities and reduced glyoxylate content; however, APX activity was not altered. CAT inhibition triggered different changes in the expression of CAT, APX and glutathione peroxidase (GPX) isoforms between non-transformed (NT) and silenced plants. These responses were associated with alterations in APX, GPX and GO activities, suggesting redox homeostasis differences. The glutathione oxidation-reduction states were modulated differently in mutants, and the ascorbate redox state was greatly affected in both genotypes. The pAPX suffered less oxidative stress and photosystem II (PSII) damage and displayed higher photosynthesis than the NT plants. The improved acclimation exhibited by the pAPX plants was indicated by lower H2 O2 accumulation, which was associated with lower GO activity and glyoxylate content. The suppression of both pAPXs and/or its downstream metabolic and molecular effects may trigger favourable antioxidant and compensatory mechanisms to cope with CAT deficiency. This physiological acclimation may involve signalling by peroxisomal H2 O2 , which minimized the photorespiration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1365-3040 |
DOI: | 10.1111/pce.12409 |