Characterization of the mouse islet-specific glucose-6-phosphatase catalytic subunit-related protein gene promoter by in situ footprinting: correlation with fusion gene expression in the islet-derived betaTC-3 and hamster insulinoma tumor cell lines

Glucose-6-phosphatase (G6Pase) is a multicomponent system located in the endoplasmic reticulum comprising a catalytic subunit and transporters for glucose-6-phosphate, inorganic phosphate, and glucose. We have recently cloned a novel gene that encodes an islet-specific G6Pase catalytic subunit-relat...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 50; no. 3; pp. 502 - 514
Main Authors Bischof, L J, Martin, C C, Svitek, C A, Stadelmaier, B T, Hornbuckle, L A, Goldman, J K, Oeser, J K, Hutton, J C, O'Brien, R M
Format Journal Article
LanguageEnglish
Published United States 01.03.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glucose-6-phosphatase (G6Pase) is a multicomponent system located in the endoplasmic reticulum comprising a catalytic subunit and transporters for glucose-6-phosphate, inorganic phosphate, and glucose. We have recently cloned a novel gene that encodes an islet-specific G6Pase catalytic subunit-related protein (IGRP) (Ebert et al., Diabetes 48:543-551, 1999). To begin to investigate the molecular basis for the islet-specific expression of the IGRP gene, a series of truncated IGRP-chloramphenicol acetyltransferase (CAT) fusion genes were transiently transfected into the islet-derived mouse betaTC-3 and hamster insulinoma tumor cell lines. In both cell lines, basal fusion gene expression decreased upon progressive deletion of the IGRP promoter sequence between -306 and -66, indicating that multiple promoter regions are required for maximal IGRP-CAT expression. The ligation-mediated polymerase chain reaction footprinting technique was then used to compare trans-acting factor binding to the IGRP promoter in situ in betaTC-3 cells, which express the endogenous IGRP gene, and adrenocortical Y1 cells, which do not. Multiple trans-acting factor binding sites were selectively identified in betaTC-3 cells that correlate with regions of the IGRP promoter identified as being required for basal IGRP-CAT fusion gene expression. The data suggest that hepatocyte nuclear factor 3 may be important for basal IGRP gene expression, as it is for glucagon, GLUT2, and Pdx-1 gene expression. In addition, binding sites for several trans-acting factors not previously associated with islet gene expression, as well as binding sites for potentially novel proteins, were identified.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0012-1797