Use of vocalic information in the identification of /s/ and /sh/ by children with cochlear implants

When a syllable such as "sea" or "she" is spoken, listeners with normal hearing extract evidence of the fricative consonant from both the fricative noise and the following vocalic segment. If the fricative noise is made ambiguous, listeners may still perceive "s" or &qu...

Full description

Saved in:
Bibliographic Details
Published inEar and hearing Vol. 23; no. 1; p. 58
Main Authors Summerfield, A Quentin, Nakisa, Melanie J, Mccormick, Barry, Archbold, Susan, Gibbin, Kevin P, Odonoghue, Gerard M
Format Journal Article
LanguageEnglish
Published United States 01.02.2002
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:When a syllable such as "sea" or "she" is spoken, listeners with normal hearing extract evidence of the fricative consonant from both the fricative noise and the following vocalic segment. If the fricative noise is made ambiguous, listeners may still perceive "s" or "sh" categorically, depending on information in the vocalic segment. Do children whose auditory experience comes from electrical stimulation also display this effect, in which a subsequent segment of speech disambiguates an earlier segment? Unambiguous vowels were appended to ambiguous fricative noises to form tokens of the words "she," "sea," "shoe," and "Sue." A four-choice identification test was undertaken by children with normal hearing (N = 29), prelingually deaf children with the Nucleus Spectra-22 implant system using the SPEAK coding strategy (N = 13), postlingually deafened adults with the same implant system (N = 26), and adults with normal hearing (N = 10). The last group undertook the test before and after the stimuli were processed to simulate the transformations introduced by the SPEAK coding strategy. All four groups made use of vocalic information. Simulated processing reduced the use made by normal-hearing adults. Implanted subjects made less use than the other groups, with no significant difference between implanted children and implanted adults. The highest levels of use by implanted subjects were within one standard deviation of the mean level displayed when normal-hearing adults listened to processed stimuli. Analyses showed that the SPEAK strategy distorted formant contours in the vocalic segments of the stimuli in ways that are compatible with the errors of identification made by implanted subjects. Some children with implants can extract information from a following vowel to disambiguate a preceding fricative noise. The upper limit on this ability may be set by distortions introduced by the implant processor, rather than by the auditory experience of the child.
ISSN:0196-0202