Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism

The most common polymorphic variant of Fcgamma receptor type IIIa (FcgammaRIIIa), FcgammaRIIIa-158F, has been associated with inferior clinical responses to anti-CD20 chimeric IgG1 rituximab compared with FcgammaRIIIa-158V. As we previously found that removal of fucose residues from the oligosacchar...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 10; no. 18 Pt 1; pp. 6248 - 6255
Main Authors Niwa, Rinpei, Hatanaka, Shigeki, Shoji-Hosaka, Emi, Sakurada, Mikiko, Kobayashi, Yukari, Uehara, Aya, Yokoi, Haruhiko, Nakamura, Kazuyasu, Shitara, Kenya
Format Journal Article
LanguageEnglish
Published United States 15.09.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The most common polymorphic variant of Fcgamma receptor type IIIa (FcgammaRIIIa), FcgammaRIIIa-158F, has been associated with inferior clinical responses to anti-CD20 chimeric IgG1 rituximab compared with FcgammaRIIIa-158V. As we previously found that removal of fucose residues from the oligosaccharides of human IgG1 results in enhanced antibody-dependent cellular cytotoxicity, we compared the effects of the FcgammaRIIIa gene (FCGR3A) polymorphism on normal and low-fucose versions of rituximab on antibody-dependent cellular cytotoxicity. The polymorphism at position 158 of FcgammaRIIIa was determined for the peripheral blood mononuclear cells (PBMCs) of 20 healthy donors. The PBMCs were then used as effector cells to compare the antibody-dependent cellular cytotoxicity of rituximab and a low-fucose version, KM3065. The contributions of the different cell types within the PBMC to antibody-dependent cellular cytotoxicity were examined. We found KM3065-mediated antibody-dependent cellular cytotoxicity was increased 10 to 100-fold compared with rituximab for each of the 20 donors. In contrast to rituximab, KM3065 antibody-dependent cellular cytotoxicity enhancement was similar for both FCGR3A alleles and thus independent of genotype. In addition, antibody-dependent cellular cytotoxicity of both KM3065 and rituximab requires natural killer cells but not monocytes nor polymorphonuclear cells. The antibody-dependent cellular cytotoxicity (ADCC) of each of the 20 donors correlated with the natural killer cell numbers present in the PBMCs. Importantly, using KM3065, the ADCC mediated by effector cells bearing the lower affinity variant FcgammaRIIIa-158F was significantly increased compared with rituximab-mediated ADCC using effector cells bearing the higher affinity FcgammaRIIIa-158V receptors. The use of low-fucose antibodies might improve the therapeutic effects of anti-CD20 therapy for all patients independent of FcgammaRIIIa phenotype beyond that currently seen with even the most responsive patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1078-0432