Integrin alphavbeta3 mediates chemotactic and haptotactic motility in human melanoma cells through different signaling pathways

Distinctions between chemotaxis and haptotaxis of cells to extracellular matrix proteins have not been defined in terms of mechanisms or signaling pathways. Migration of A2058 human melanoma cells to soluble (chemotaxis) and substratum-bound (haptotaxis) vitronectin, mediated by alphav beta3, provid...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 271; no. 6; pp. 3247 - 3254
Main Authors Aznavoorian, S, Stracke, M L, Parsons, J, McClanahan, J, Liotta, L A
Format Journal Article
LanguageEnglish
Published United States 09.02.1996
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Distinctions between chemotaxis and haptotaxis of cells to extracellular matrix proteins have not been defined in terms of mechanisms or signaling pathways. Migration of A2058 human melanoma cells to soluble (chemotaxis) and substratum-bound (haptotaxis) vitronectin, mediated by alphav beta3, provided a system with which to address these questions. Both chemotaxis and haptotaxis were completely inhibited by treatment with RGD-containing peptides. Chemotaxis was abolished by a blocking antibody to alphavbeta3 (LM609), whereas haptotaxis was inhibited only by approximately 50%, suggesting involvement of multiple receptors and/or signaling pathways. However, blocking antibodies to alphavbeta5, also present on A2058 cells, did not inhibit. Pertussis toxin treatment of cells inhibited chemotaxis by >80%, but did not inhibit haptotaxis. Adhesion and spreading over vitronectin induced the phosphorylation of paxillin on tyrosine. In cells migrating over substratum-bound vitronectin, tyrosine phosphorylation of paxillin increased 5-fold between 45 min and 5 h. Dilutions of anti- alphavbeta3 that inhibited haptotaxis also inhibited phosphorylation of paxillin (by approximately 50%) and modestly reduced cell spreading. In contrast, soluble vitronectin (50-100 microg/ml) did not induce tyrosine phosphorylation of paxillin. The data suggest that soluble vitronectin stimulates chemotaxis predominantly through a G protein-mediated pathway that is functionally linked to alphavbeta3. Haptotaxis is analogous to directional cell spreading and requires alphavbeta3-mediated tyrosine phosphorylation of paxillin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258