1-Aryl-3-(1H-imidazol-1-yl)propan-1-ol esters: synthesis, anti-Candida potential and molecular modeling studies

An increased incidence of fungal infections, both invasive and superficial, has been witnessed over the last two decades. Candida species seem to be the main etiology of nosocomial fungal infections worldwide with Candida albicans, which is commensal in healthy individuals, accounting for the majori...

Full description

Saved in:
Bibliographic Details
Published inBMC chemistry Vol. 7; no. 1; p. 168
Main Authors Attia, Mohamed I, Radwan, Awwad A, Zakaria, Azza S, Almutairi, Maha S, Ghoneim, Soraya W
Format Journal Article
LanguageEnglish
Published England Springer Nature B.V 25.10.2013
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An increased incidence of fungal infections, both invasive and superficial, has been witnessed over the last two decades. Candida species seem to be the main etiology of nosocomial fungal infections worldwide with Candida albicans, which is commensal in healthy individuals, accounting for the majority of invasive Candida infections with about 30-40% of mortality. New aromatic and heterocyclic esters 5a-k of 1-aryl-3-(1H-imidazol-1-yl)propan-1-ols 4a-d were successfully synthesized and evaluated for their anti-Candida potential. Compound 5a emerged as the most active congener among the newly synthesized compounds 5a-k with MIC value of 0.0833 μmol/mL as compared with fluconazole (MIC value >1.6325 μmol/mL). Additionally, molecular modeling studies were conducted on a set of anti-Candida albicans compounds. The newly synthesized esters 5a-k showed more potent anti-Candida activities than fluconazole. Compounds 7 and 8 revealed significant anti-Candida albicans activity and were able to effectively satisfy the proposed pharmacophore geometry, using the energy accessible conformers (Econf < 20 kcal/mol).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1752-153X
1752-153X
2661-801X
DOI:10.1186/1752-153X-7-168