Information-Flow Control by Means of Security Wrappers for Active Object Languages with Futures

This paper introduces a run-time mechanism for preventing leakage of secure information in distributed systems. We consider a general concurrency language model where concurrent objects interact by asynchronous method calls and futures. The aim is to prevent leakage of secure information to low-leve...

Full description

Saved in:
Bibliographic Details
Published inSecure IT Systems Vol. 12556; pp. 74 - 91
Main Authors Karami, Farzane, Owe, Olaf, Schneider, Gerardo
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper introduces a run-time mechanism for preventing leakage of secure information in distributed systems. We consider a general concurrency language model where concurrent objects interact by asynchronous method calls and futures. The aim is to prevent leakage of secure information to low-level viewers. The approach is based on a notion of security wrappers, where a wrapper encloses an object or a component and controls its interactions with the environment. Our run-time system automatically adds a wrapper to an insecure component.The wrappers are invisible such that a wrapped component and its environment are not aware of it. The security policies of a wrapper are formalized based on a notion of security levels. At run-time, future components will be wrapped upon need, and objects of unsafe classes will be wrapped, using static checking to limit the number of unsafe classes and thereby reducing run-time overhead. We define an operational semantics and sketch a proof of non-interference. A service provider may use wrappers to protect its services in an insecure environment, and vice-versa: a system platform may use wrappers to protect itself from insecure service providers.
ISBN:9783030708511
3030708519
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-70852-8_5